Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Adapting agricultural practices to reduce the greenhouse effect


More than one-third of the greenhouse gases emitted into the atmosphere stem from agriculture and forestry. One of the current concerns is to find ways of managing agriculture differently in order to increase the level of carbon storage in soils and limit emission of gases that contribute to global atmospheric warming.

Photosynthesis ensures that plants assimilate carbon dioxide, in the form of plant carbon, part of which (in roots and crop residues) is returned to the soil and stored in a stable form in organic matter. The quantities of carbon stored in the soil depend as much on crop practices as on the soil characteristics. However, some agricultural practices (such as fertilizing and irrigation) favour emission of other greenhouse gases, such as methane and nitrous oxide. Alternative plantation management methods often recommended include the omission of ploughing and cultivation under plant cover. IRD researchers are working on quantitative field assessment of different management alternatives for agriculture and forestry in tropical areas. In Brazil, they have been working with local partners (1) and have brought to evidence the advantages of changing over from traditional methods of sugarcane harvesting involving burning to practices that omit burning.

In Brazil, sugarcane plantations occupy nearly 5 million hectares and produce 10 to 15 tonnes (dry weight) of leaves per hectare per year. Traditional harvesting is a manual method and is carried out after burning of the uncut cane. Burning of the leaves immediately changes the plant carbon into carbon dioxide and methane, which add to existing atmospheric concentrations. It also leads to emissions of nitrous oxide, which comes from part of the plant nitrogen. Methane and nitrous oxide have high potential for contributing to global warming, respectively 20 and 300 times higher than that of carbon dioxide. Moreover, plantation burning liberates potentially toxic, polluting carbon-rich ash and, owing to the elimination of leaf litter, favours soil erosion. An alternative to this system is the non-burning method, but this practice demands mechanization of harvesting (2). In this case, the leaves are left lying as a mulch on the ground. Decomposition releases most of their components (80 to 90%) as carbon dioxide into the atmosphere during the year that follows. The remainder (10 to 20%) can accumulate as litter or become incorporated in the first few centimetres of soil, in this way increasing the amount of carbon stored.

Comparative and quantitative study of these two management methods, conducted over a period of 3 to 6 years, showed that the adoption of the non-burning method induced in the first years increased storage of carbon in the soils and a reduction of total emissions of oxides of nitrogen and methane. The average quantity of litter produced in one year was estimated at 10.4 tonnes per hectare, which represents about 4.5 tonnes of carbon. Thus, in the first 20 centimetres of soil, up to 1.6 tonnes more carbon are stored during the first four years of cultivation, compared with the traditional practice using burning. Whereas few differences are observed for emissions of methane and nitrous oxide measured on the soil surface, the absence of leaf burning avoids the emission of a significant amount of these gases into the atmosphere.

Globally, carbon storage in soils and the limitation of gas emissions lead to a net annual gain of 1837 kg equivalents of stored and/or non-emitted carbon. In fact, if the whole of the surface area devoted to sugarcane in Brazil was managed using non-burning systems, the annual sequestration of carbon would represent about 15% of the emissions ascribable to the use of fossil fuels in the country.

Furthermore, this harvesting practice appears beneficial for soil fauna activity and diversity. The traditional practices in fact lead to a sharp fall in diversity and faunal biomass from levels in soil that pre-existed the start of sugarcane growing. However, just three years of the non-burning system were sufficient to restore a diversity and a faunal activity equivalent to those of the initial soil. Adoption of the non-burning system in Brazil, which has advantages for both human health and the environment, could therefore provide the country with a means of contributing to the restriction of the greenhouse effect, even of eventually joining the international market for carbon. However, this practice, which involves a change-over from manual harvesting to mechanized methods, implies substantial financial investment and a sizeable loss of jobs.

Marie Guillaume - IRD

(1) For this investigation, the IRD research unit " Séquestration du carbone dans les sols tropicaux " worked, in Brazil (Piracicaba), with the Laboratory of Environmental Biogeochemistry of the CENA (Centro de Energia Nuclear na Agricultura, University of São Paulo).

(2) In the State of São Paulo, responsible for over half of Brazil’s sugarcane output, legislation now obliges sugar refineries and distilleries to move over gradually to a non-burning harvest system. This legislation is founded on government decree n°10.547 of 2 May 2000, supplemented with decree n°11.241 of 19 September 2002.

Marie Guillaume | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>