Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adapting agricultural practices to reduce the greenhouse effect

23.11.2004


More than one-third of the greenhouse gases emitted into the atmosphere stem from agriculture and forestry. One of the current concerns is to find ways of managing agriculture differently in order to increase the level of carbon storage in soils and limit emission of gases that contribute to global atmospheric warming.



Photosynthesis ensures that plants assimilate carbon dioxide, in the form of plant carbon, part of which (in roots and crop residues) is returned to the soil and stored in a stable form in organic matter. The quantities of carbon stored in the soil depend as much on crop practices as on the soil characteristics. However, some agricultural practices (such as fertilizing and irrigation) favour emission of other greenhouse gases, such as methane and nitrous oxide. Alternative plantation management methods often recommended include the omission of ploughing and cultivation under plant cover. IRD researchers are working on quantitative field assessment of different management alternatives for agriculture and forestry in tropical areas. In Brazil, they have been working with local partners (1) and have brought to evidence the advantages of changing over from traditional methods of sugarcane harvesting involving burning to practices that omit burning.

In Brazil, sugarcane plantations occupy nearly 5 million hectares and produce 10 to 15 tonnes (dry weight) of leaves per hectare per year. Traditional harvesting is a manual method and is carried out after burning of the uncut cane. Burning of the leaves immediately changes the plant carbon into carbon dioxide and methane, which add to existing atmospheric concentrations. It also leads to emissions of nitrous oxide, which comes from part of the plant nitrogen. Methane and nitrous oxide have high potential for contributing to global warming, respectively 20 and 300 times higher than that of carbon dioxide. Moreover, plantation burning liberates potentially toxic, polluting carbon-rich ash and, owing to the elimination of leaf litter, favours soil erosion. An alternative to this system is the non-burning method, but this practice demands mechanization of harvesting (2). In this case, the leaves are left lying as a mulch on the ground. Decomposition releases most of their components (80 to 90%) as carbon dioxide into the atmosphere during the year that follows. The remainder (10 to 20%) can accumulate as litter or become incorporated in the first few centimetres of soil, in this way increasing the amount of carbon stored.


Comparative and quantitative study of these two management methods, conducted over a period of 3 to 6 years, showed that the adoption of the non-burning method induced in the first years increased storage of carbon in the soils and a reduction of total emissions of oxides of nitrogen and methane. The average quantity of litter produced in one year was estimated at 10.4 tonnes per hectare, which represents about 4.5 tonnes of carbon. Thus, in the first 20 centimetres of soil, up to 1.6 tonnes more carbon are stored during the first four years of cultivation, compared with the traditional practice using burning. Whereas few differences are observed for emissions of methane and nitrous oxide measured on the soil surface, the absence of leaf burning avoids the emission of a significant amount of these gases into the atmosphere.

Globally, carbon storage in soils and the limitation of gas emissions lead to a net annual gain of 1837 kg equivalents of stored and/or non-emitted carbon. In fact, if the whole of the surface area devoted to sugarcane in Brazil was managed using non-burning systems, the annual sequestration of carbon would represent about 15% of the emissions ascribable to the use of fossil fuels in the country.

Furthermore, this harvesting practice appears beneficial for soil fauna activity and diversity. The traditional practices in fact lead to a sharp fall in diversity and faunal biomass from levels in soil that pre-existed the start of sugarcane growing. However, just three years of the non-burning system were sufficient to restore a diversity and a faunal activity equivalent to those of the initial soil. Adoption of the non-burning system in Brazil, which has advantages for both human health and the environment, could therefore provide the country with a means of contributing to the restriction of the greenhouse effect, even of eventually joining the international market for carbon. However, this practice, which involves a change-over from manual harvesting to mechanized methods, implies substantial financial investment and a sizeable loss of jobs.

Marie Guillaume - IRD

(1) For this investigation, the IRD research unit " Séquestration du carbone dans les sols tropicaux " worked, in Brazil (Piracicaba), with the Laboratory of Environmental Biogeochemistry of the CENA (Centro de Energia Nuclear na Agricultura, University of São Paulo).

(2) In the State of São Paulo, responsible for over half of Brazil’s sugarcane output, legislation now obliges sugar refineries and distilleries to move over gradually to a non-burning harvest system. This legislation is founded on government decree n°10.547 of 2 May 2000, supplemented with decree n°11.241 of 19 September 2002.

Marie Guillaume | alfa
Further information:
http://www.ird.fr

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>