Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two novel species of bacteria isolated from oil wells

23.11.2004


Oilfields usually represent extreme environments, where physicochemical conditions appear at first sight to be generally unsuitable for living organisms to develop. However, these environments, usually poor in nitrates and oxygen, harbour a rich diverse community of microorganisms. The most widely represented and best-known types are sulfate-reducing, methanogenic and fermentative bacteria.



Nitrate-reducing bacteria, on the other hand, have received little research attention regarding their biology and role. Nevertheless some of their bacteria are known also to have the ability to oxidize sulfates. These components, which can result from metabolic activity of sulfate-reducing bacteria, prove dangerous for the environment and corrosive for drilling equipment. Nitrate injection is practised in some regions of the world in order to restrict the emission of sulfites produced during processes of exploitation of oil deposits. This input of nitrates stimulates nitrate-reducing bacteria, initially present in low quantities in the waters associated with oil reservoirs, to proliferate (2). They thus induce at once inhibition of the development of sulfate-reducing bacteria and oxidation of sulfides that such microorganisms produce.

The question remains of determining whether or not these nitrate inputs into the petroleum reservoir environment can favour the growth of populations of nitrate-reducing microorganisms different from those which oxidize the sulfides, in this way modifying the microbial ecology of oil wells. IRD scientists are therefore investigating in the laboratory the metabolism of novel nitrate-reducing bacteria, especially those able to oxidize organic acids. These acids are often present in the waters of oil reservoirs.


The IRD team surveyed oilfields in Australia and Mexico, along with their scientific partners in these countries (1). The group has succeeded in isolating and identifying two novel nitrate-reducing bacteria, Petrobacter succinatimandens and Garciella nitratireductens (3), which can be distinguished by their metabolic activities. The bacterium Petrobacter succinatimandens, extracted from an oil well located in Queensland, in the East of Australia, was shown to be capable of oxidizing the organic acids. It has an aerobic metabolism, which means that it develops in the presence of oxygen. Accidental introduction of oxygen, by means of an input of water from outside the oil deposit (rainwater infiltrations, common practice of water injection while oil is being extracted) could explain the presence of this bacterium and its survival in an anaerobic environment. However, Garciella nitratireductens, isolated from several oil wells in the Gulf of Mexico, has an anaerobic metabolism, like most microorganisms that live in these kinds of habitat.

This research work brings fundamental new information about oil reservoir ecosystems and the microorganisms which colonize there. In particular they offer the oil industry the means to gauge more accurately the biodiversity of nitrate-reducing microorganisms in the reservoirs and the impact of their metabolism on the biogeochemical cycles of matter, within these environments. Other research has been embarked upon in order to identify bacteria potentially useful for industry, characteristic of oil reservoir environments, which might be usefully deployed in aided recuperation of oil deposits by microorganism-based processes (production of acids, gases and surfactants…).

(1) The IRD worked with Griffith University, Brisbane, Australia in one investigation, and with the Autonomous Metropolitan University of Mexico City and the Mexican Petroleum Institute, in the other.

(2) In this case, development occurs entirely in an enclosed environment.

(3) They are two species, each representing a new genus. Petrobacter succinatimandens belongs to the b-Proteobacteria class and Garciella nitratireductens to the Clostridiales order.

Marie Guillaume | alfa
Further information:
http://www.ird.fr

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>