Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avian cholera could spread from Great Salt Lake

15.11.2004


Scientists at the U.S. Geological Survey’s (USGS) National Wildlife Health Center are concerned that avian cholera, which recently killed about 30,000 eared grebes--small, diving water birds--at Great Salt Lake, Utah, could spread as birds migrate south for the winter, the agency announced today. Last week, USGS scientists isolated Pasteurella multocida, the bacterium that causes avian cholera, from dead grebes that were sent to the USGS National Wildlife Health Center in Madison, Wis. USGS scientists are working with Utah biologists to monitor the situation.



"We haven’t observed significant avian cholera outbreaks in North America since 1998, so we aren’t certain if this mortality represents an isolated event or a renewal of regular outbreaks," says Mike Samuel, a USGS scientist and avian cholera expert. "Because recent research shows that birds are the primary reservoir for maintaining and spreading this disease, we need to consider the possibility that grebes and other birds will spread avian cholera beyond the Great Salt Lake during their migration to wintering areas." Each fall about 1.5 million eared grebes congregate at the Great Salt Lake as they migrate south.

Avian cholera is the most common infectious disease among wild North American waterfowl. Once birds are infected with P. multocida, they die quickly, sometimes within 6 to 12 hours after infection. Bacteria spread by dead and dying birds can subsequently infect healthy birds. As a result, avian cholera can sweep quickly through a wetland and kill thousands of birds in a single outbreak.


Avian cholera outbreaks occur primarily in winter and early spring. During these times, waterfowl are usually in dense groups on wintering or staging areas and may be experiencing stress due to crowding and severe weather. These conditions may serve to initiate an outbreak and facilitate transmission of the disease. Previous outbreaks of avian cholera have erupted at Great Salt Lake, killing tens of thousands of birds. The bacterium that causes avian cholera is not a significant human health threat, although the disease is readily transmitted among bird species.

Avian cholera was introduced to North America from domestic fowl and eventually spread to wild bird populations during the 1940s. Since that time, it has spread throughout most of the U.S. Over the past 10 to 15 years, avian cholera has recurred almost annually in several areas: southern Saskatchewan, California’s Central Valley and Klamath Basin, the Texas panhandle and rice belt, the Rainwater Basin of Nebraska, and in the Mississippi and Missouri River drainages. For more information on avian cholera, go to http://www.nwhc.usgs.gov/research/avian_cholera/avian_cholera.html.

Rex Sohn | EurekAlert!
Further information:
http://www.usgs.gov
http://www.nwhc.usgs.gov/research/avian_cholera/avian_cholera.html

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>