Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extinction in ocean’s mud presages key ecological changes

12.11.2004


The loss of seemingly inconsequential animal species in the marine benthos - the top 6 inches or so of mud and sediment on the floors of the world’s oceans - is giving scientists a new look ahead at the consequences of the steady decline of the world’s biological diversity.



In new work published today (Nov. 12) in the journal Science, an international team of scientists describe work in which the ocean mud and the many animals that live there are used to forecast how the extinction of species alters important ecological processes that sustain life at the bottom of the ocean.

The team’s work was funded by the National Science Foundation.


"This is one of the first stabs at trying to see what will happen in ocean ecosystems as species go extinct," says Bradley Cardinale, a University of Wisconsin-Madison postdoctoral fellow in zoology and a co-author of the paper. "What goes on in the sediment is important, not only because it affects life at the bottom of the ocean, but also because it has a big impact on the rest of the marine ecosystem."

In the mud and sediments that have accumulated during many thousands of years at the bottom of the world’s oceans lives an astonishing array of animals - such as crabs, clams, sea urchins, brittlestars and marine worms. These animals play an essential role in churning up and filling the sediments with oxygen, making it possible for other forms of marine life to flourish.

The new study rests on a comprehensive survey of 139 marine invertebrates that inhabit the sediment of Galway Bay, Ireland, led by Martin Solan of the University of Aberdeen, Scotland. By looking at how extensively the sediments are mixed there, and matching that with data on each species’ size, abundance and movement through the mud, it is possible to construct mathematical models to predict the ecological consequences of losing species, according to Cardinale.

Running the models, the group found that the extinction of species is generally expected to reduce the amount of sediment mixing, and consequently diminish the oxygen concentrations that sustain bottom-dwelling life. The amount of change, according to the study, depends on the reasons species are going extinct and the order in which animals disappear. "We know certain types of species are at greater risk of extinction than others," says Cardinale. "For example, large species often go extinct first, and that is important in the marine benthic environment because the bigger you are, the more sediment you are able to mix up."

And while the creatures that inhabit the mud at the bottom of the ocean may seem remote and unimportant, Cardinale pointed out that oceans cover 70 percent of the Earth’s surface, and that the productivity of the sea is intricately linked to sediments that generate nutrients and food for other organisms such as fish. In places where human activities have disrupted marine sediments, such as the enormous "dead zone" in the Gulf of Mexico - where excess fertilizers are dumped by the Mississippi River - nearly all life has vanished. "One thing our study suggests," Cardinale asserts, "is we need to know why species are going extinct in the first place. Even though extinction leads to less sediment mixing in our models, things can be far worse or not quite as bad, depending on the particular order in which species disappear."

To maintain the functional necessities of an ecosystem, the study also suggests, that both the total number of species and the particular types of species going extinct matter: "There are certain really high-impact species that, if they survive, sediment mixing can be maintained for some time," he says. "Even so, reducing the total number of species eventually leads to large changes. This suggests that conservation efforts should focus not just on the seemingly important species, but also on the total variety of life found in an ecosystem."

Despite that, the discovery that the order in which animals go extinct is important and essential to knowing what the long-term environmental effects will be. "The finding is important because it argues that the particular cause of extinction ultimately governs the ecosystem-level consequences of biodiversity loss," the researchers conclude.

In short, predicting how coastal environments will cope as animal species decline as a result of human activity will depend on a better grasp of why species are at risk and how that risk is amplified or minimized by an animal’s functional traits.

In addition to Cardinale and Solan, authors of the Science paper include Amy Downing of Ohio Wesleyan University, Katharina Engelhardt of the University of Maryland Center for Environmental Science, Jennifer Ruesink of the University of Washington and Diane Srivastava of the University of British Columbia.

Bradley Cardinale | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>