Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Extinction in ocean’s mud presages key ecological changes


The loss of seemingly inconsequential animal species in the marine benthos - the top 6 inches or so of mud and sediment on the floors of the world’s oceans - is giving scientists a new look ahead at the consequences of the steady decline of the world’s biological diversity.

In new work published today (Nov. 12) in the journal Science, an international team of scientists describe work in which the ocean mud and the many animals that live there are used to forecast how the extinction of species alters important ecological processes that sustain life at the bottom of the ocean.

The team’s work was funded by the National Science Foundation.

"This is one of the first stabs at trying to see what will happen in ocean ecosystems as species go extinct," says Bradley Cardinale, a University of Wisconsin-Madison postdoctoral fellow in zoology and a co-author of the paper. "What goes on in the sediment is important, not only because it affects life at the bottom of the ocean, but also because it has a big impact on the rest of the marine ecosystem."

In the mud and sediments that have accumulated during many thousands of years at the bottom of the world’s oceans lives an astonishing array of animals - such as crabs, clams, sea urchins, brittlestars and marine worms. These animals play an essential role in churning up and filling the sediments with oxygen, making it possible for other forms of marine life to flourish.

The new study rests on a comprehensive survey of 139 marine invertebrates that inhabit the sediment of Galway Bay, Ireland, led by Martin Solan of the University of Aberdeen, Scotland. By looking at how extensively the sediments are mixed there, and matching that with data on each species’ size, abundance and movement through the mud, it is possible to construct mathematical models to predict the ecological consequences of losing species, according to Cardinale.

Running the models, the group found that the extinction of species is generally expected to reduce the amount of sediment mixing, and consequently diminish the oxygen concentrations that sustain bottom-dwelling life. The amount of change, according to the study, depends on the reasons species are going extinct and the order in which animals disappear. "We know certain types of species are at greater risk of extinction than others," says Cardinale. "For example, large species often go extinct first, and that is important in the marine benthic environment because the bigger you are, the more sediment you are able to mix up."

And while the creatures that inhabit the mud at the bottom of the ocean may seem remote and unimportant, Cardinale pointed out that oceans cover 70 percent of the Earth’s surface, and that the productivity of the sea is intricately linked to sediments that generate nutrients and food for other organisms such as fish. In places where human activities have disrupted marine sediments, such as the enormous "dead zone" in the Gulf of Mexico - where excess fertilizers are dumped by the Mississippi River - nearly all life has vanished. "One thing our study suggests," Cardinale asserts, "is we need to know why species are going extinct in the first place. Even though extinction leads to less sediment mixing in our models, things can be far worse or not quite as bad, depending on the particular order in which species disappear."

To maintain the functional necessities of an ecosystem, the study also suggests, that both the total number of species and the particular types of species going extinct matter: "There are certain really high-impact species that, if they survive, sediment mixing can be maintained for some time," he says. "Even so, reducing the total number of species eventually leads to large changes. This suggests that conservation efforts should focus not just on the seemingly important species, but also on the total variety of life found in an ecosystem."

Despite that, the discovery that the order in which animals go extinct is important and essential to knowing what the long-term environmental effects will be. "The finding is important because it argues that the particular cause of extinction ultimately governs the ecosystem-level consequences of biodiversity loss," the researchers conclude.

In short, predicting how coastal environments will cope as animal species decline as a result of human activity will depend on a better grasp of why species are at risk and how that risk is amplified or minimized by an animal’s functional traits.

In addition to Cardinale and Solan, authors of the Science paper include Amy Downing of Ohio Wesleyan University, Katharina Engelhardt of the University of Maryland Center for Environmental Science, Jennifer Ruesink of the University of Washington and Diane Srivastava of the University of British Columbia.

Bradley Cardinale | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>