Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extinction in ocean’s mud presages key ecological changes

12.11.2004


The loss of seemingly inconsequential animal species in the marine benthos - the top 6 inches or so of mud and sediment on the floors of the world’s oceans - is giving scientists a new look ahead at the consequences of the steady decline of the world’s biological diversity.



In new work published today (Nov. 12) in the journal Science, an international team of scientists describe work in which the ocean mud and the many animals that live there are used to forecast how the extinction of species alters important ecological processes that sustain life at the bottom of the ocean.

The team’s work was funded by the National Science Foundation.


"This is one of the first stabs at trying to see what will happen in ocean ecosystems as species go extinct," says Bradley Cardinale, a University of Wisconsin-Madison postdoctoral fellow in zoology and a co-author of the paper. "What goes on in the sediment is important, not only because it affects life at the bottom of the ocean, but also because it has a big impact on the rest of the marine ecosystem."

In the mud and sediments that have accumulated during many thousands of years at the bottom of the world’s oceans lives an astonishing array of animals - such as crabs, clams, sea urchins, brittlestars and marine worms. These animals play an essential role in churning up and filling the sediments with oxygen, making it possible for other forms of marine life to flourish.

The new study rests on a comprehensive survey of 139 marine invertebrates that inhabit the sediment of Galway Bay, Ireland, led by Martin Solan of the University of Aberdeen, Scotland. By looking at how extensively the sediments are mixed there, and matching that with data on each species’ size, abundance and movement through the mud, it is possible to construct mathematical models to predict the ecological consequences of losing species, according to Cardinale.

Running the models, the group found that the extinction of species is generally expected to reduce the amount of sediment mixing, and consequently diminish the oxygen concentrations that sustain bottom-dwelling life. The amount of change, according to the study, depends on the reasons species are going extinct and the order in which animals disappear. "We know certain types of species are at greater risk of extinction than others," says Cardinale. "For example, large species often go extinct first, and that is important in the marine benthic environment because the bigger you are, the more sediment you are able to mix up."

And while the creatures that inhabit the mud at the bottom of the ocean may seem remote and unimportant, Cardinale pointed out that oceans cover 70 percent of the Earth’s surface, and that the productivity of the sea is intricately linked to sediments that generate nutrients and food for other organisms such as fish. In places where human activities have disrupted marine sediments, such as the enormous "dead zone" in the Gulf of Mexico - where excess fertilizers are dumped by the Mississippi River - nearly all life has vanished. "One thing our study suggests," Cardinale asserts, "is we need to know why species are going extinct in the first place. Even though extinction leads to less sediment mixing in our models, things can be far worse or not quite as bad, depending on the particular order in which species disappear."

To maintain the functional necessities of an ecosystem, the study also suggests, that both the total number of species and the particular types of species going extinct matter: "There are certain really high-impact species that, if they survive, sediment mixing can be maintained for some time," he says. "Even so, reducing the total number of species eventually leads to large changes. This suggests that conservation efforts should focus not just on the seemingly important species, but also on the total variety of life found in an ecosystem."

Despite that, the discovery that the order in which animals go extinct is important and essential to knowing what the long-term environmental effects will be. "The finding is important because it argues that the particular cause of extinction ultimately governs the ecosystem-level consequences of biodiversity loss," the researchers conclude.

In short, predicting how coastal environments will cope as animal species decline as a result of human activity will depend on a better grasp of why species are at risk and how that risk is amplified or minimized by an animal’s functional traits.

In addition to Cardinale and Solan, authors of the Science paper include Amy Downing of Ohio Wesleyan University, Katharina Engelhardt of the University of Maryland Center for Environmental Science, Jennifer Ruesink of the University of Washington and Diane Srivastava of the University of British Columbia.

Bradley Cardinale | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>