Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Order of species loss has important biodiversity consequences

12.11.2004


In a study that mimicked the natural order of species loss in a grassland ecosystem, researchers found that declining biodiversity greatly reduced resistance to invasive species and that the presence of even small numbers of rare species had profound functional effects.



The results have important implications for understanding the biodiversity crisis, said researcher Erika S. Zavaleta, assistant professor of environmental studies at the University of California, Santa Cruz. Previous experiments relied on random species removal rather than realistic patterns of loss, which turn out to be quite dissimilar."We replicated natural patterns and processes and found that both patterns of abundance and the order of species loss matter a great deal," said Zavaleta, who conducted the five-year study with Kristin B. Hulvey, a doctoral student in environmental studies at UCSC. "This defines a new direction for research."

In the realistic loss scenario, entire groups of plants with unique functions disappeared faster than expected by chance, and invader resistance declined dramatically. The results suggest that biodiversity losses in natural systems can have far greater impacts than indicated by randomized-loss experiments.


The five-year study is among the first to combine conservation biology’s focus on the order of species loss with experimental scrutiny of the consequences of those losses. It was conducted at the Jasper Ridge Biological Preserve at Stanford University.

After four years of observation to understand natural patterns of species loss, 70 research plots were planted with common annual grasses, rare summer-flowering forbs, and rare native bunch grasses. Plots reflected six levels of species diversity. Half of the plots were then invaded with Centaurea soltitialis L. (yellow starthistle), one of the most ecologically and economically damaging weeds in California. "Then we watched how able the starthistle was to invade the various communities," said Zavaleta. "Starthistle was much less able to invade the more diverse communities."

In fact, from the most diverse to the least diverse plots, starthistle biomass increased by more than 100 percent. Even in plots where the total biomass of five rare species made up as little as 3 percent of the grassland, the extra diversity thwarted invaders, said Zavaleta. "Plots with 15 species had 75 percent more starthistle than plots with 20 species," she said.

Each species, no matter how few in number, potentially provides different services within the ecosystem, explained Zavaleta. "Those extra species in our study are functionally unique. They are alive at different times of the year, and their roots are at different depths," she said. "It turns out that very rare things can matter a lot."

Other research has shown that more diverse communities use resources more efficiently, from water and nutrients to light, said Zavaleta. "By monopolizing resources, they’re keeping invaders away," she added. "With fewer species, there are holes in the system and invaders can come in. Just a couple of members of certain species can help plug those holes. There may be only a few sprinkled around, but they can still be exerting a big effect on the way the system works.

Zavaleta likens the ecosystem benefits of retaining rare species to the role of a child plugging a dike with his thumb. "It’s a small difference that can have huge consequences," she said. "Most ecologists would like to see natural systems able to do that--resist accidental invasion."

Underscoring the importance of the experiment’s design, Zavaleta and Hulvey note that their findings differ from the results of studies at the same site that tested the effects of randomized changes in species richness on starthistle. That work found little difference in invader success depending on the number of species in each plot.

"The incorporation of realistic species loss order into our experimental design profoundly altered the observed relation between diversity and invasibility," they write.

Jennifer McNulty | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>