Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changing ecosystems

09.11.2004


Both studies appear in Volume 85, issue 10 of Ecology, the most recent issue of the journal.



Invading Trout Reduce Forest Spiders by Altering the Stream Food Web That Supplies Their Prey

A team of researchers from the U.S. and Japan have shown that exotic species can have strong effects that degrade not only the ecosystems they invade, but also spread to adjacent ecosystems as well. Colden Baxter, Kurt Fausch and Phillip Chapman from Colorado State University collaborated with Masashi Murakami of Hokkaido University to conduct a large experiment in a watershed of northern Japan. The study showed that non-native rainbow trout usurped forest insects that fell into the stream, depriving native trout of more than 80% of their diet. This forced the native fish to feed primarily on insect larvae that live on the stream bottom, which decreased adult insects emerging from the stream to the forest. In turn, this caused a 65% reduction in forest spiders that, like other forest-dwellers such as birds and bats, prey on insects emerging from the stream. This research demonstrates that species invasions can decouple critical connections between ecosystems like streams and forests and have strong effects that propagate across their boundaries to generate ecological surprises.


The Matrix Enhances the Effectiveness of Corridors and Stepping Stones

Human-modified landscapes have been implicated worldwide as a primary cause for the loss of native flora and fauna. Corridors and stepping stones have been proposed as strategies to increase landscape connectivity for fragmented populations. However, animals also move through the matrix, or habitat between patches, and the influence of different matrix types on the effectiveness of corridors and stepping stones has never been evaluated experimentally. Researchers from Louisiana State University, Kristen Baum, Kyle Haynes, Forrest Dillemuth and James Cronin, investigated the influence of the matrix on the effectiveness of corridors and stepping stones for the dispersal of planthoppers in experimental landscapes in northeast North Dakota. The scientists found that the matrix can determine whether, and to what extent, corridors and stepping stones increase landscape connectivity. Corridors were more effective in a low resistance matrix (one that facilitates high rates of dispersal among patches) than a high-resistance matrix (one that promotes low rates of dispersal among patches), while stepping stones only increased planthopper colonization when surrounded by a low-resistance matrix. According to the authors, conservation strategies and management plans should explicitly consider the matrix when evaluating strategies to increase landscape connectivity.

Annie Drinkard | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>