Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find acid rain an unlikely ally in the battle against a greenhouse gas

05.11.2004


Recently scientists from NASA and Open University in the United Kingdom set out to study how acid rain affects the methane gas that comes from wetlands in the U.S., England and Sweden.

Scientists went into natural wetlands because although most methane is produced by human activities, a large amount actually comes from natural wetlands. The concern with methane is that it’s a greenhouse gas that contributes to warming our planet. The researchers discovered that low levels of sulfate, which is in acid rain, actually block some bacteria found in wetlands from producing methane. Dr. Vincent Gauci of Open University, United Kingdom, lead author of the study, said "We wouldn’t want to give the impression that acid rain is a good thing - it has long been known that acid rain damages natural ecosystems such as forests, grasslands, rivers and lakes. But our findings suggest that small amounts of pollution may also have a positive effect in blocking this important greenhouse gas."

In the wetland study areas, scientists applied several quantities of sulfate, similar to the amounts found in acid rain. The results, acquired over several years, showed that low doses of sulfate reduced methane emissions by 30 to 40 percent. What determines how much methane is produced in wetlands? The answer lies under the microscope. Carbon, heat and moisture are known to influence methane production by single-celled bacteria called Archaea. Under normal conditions, these bacteria "eat" carbon in the soil for energy and release methane as a byproduct. But, many types of bacteria thrive in the wetland environment. When sulfate from acid rain is in wetlands, another type of bacteria that reduce sulfates can out-compete the Archaea, and help limit the amount of methane they produce.



Wetlands may produce as much as 320 million tons of methane annually but only about half of that, or 160 million tons, gets into the atmosphere. The other 160 million tons never makes it. That’s because it is destroyed when it mixes with oxygen as it moves through the soils from wet to dry and up to the surface. Despite the destruction of about half the methane produced, natural wetlands remain the single largest source of methane emissions, accounting for about one third of the global annual total from the Earth. "It’s a complicated problem because many factors from microscopic to global scales interact in these processes," said Elaine Matthews, a scientist at NASA’s Goddard Institute for Space Studies (GISS), New York, and co-author of the study. The maximum emission of methane from wetlands occurs when conditions are warm and wet, while the biggest reduction in methane is achieved when the location of wetlands, sulfates in acid rain, high temperatures and substantial precipitation all come together.

"When we used all the field data with the NASA computer models and applied it to a global scale, it shows that the effect of acid rain from 1960 to 2030 actually reduces methane emissions to below pre-industrial levels," said Gauci. The effect more than compensates for the increase in methane emission that would be expected as wetlands become warmer. In this way, acid rain acts like a temporary lid on the largest methane source. However, experts expect methane emissions to increase over the entire 21st century in response to climate change.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov
http://www.nasa.gov/vision/earth/environment/acid_rain.html

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>