Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find acid rain an unlikely ally in the battle against a greenhouse gas

05.11.2004


Recently scientists from NASA and Open University in the United Kingdom set out to study how acid rain affects the methane gas that comes from wetlands in the U.S., England and Sweden.

Scientists went into natural wetlands because although most methane is produced by human activities, a large amount actually comes from natural wetlands. The concern with methane is that it’s a greenhouse gas that contributes to warming our planet. The researchers discovered that low levels of sulfate, which is in acid rain, actually block some bacteria found in wetlands from producing methane. Dr. Vincent Gauci of Open University, United Kingdom, lead author of the study, said "We wouldn’t want to give the impression that acid rain is a good thing - it has long been known that acid rain damages natural ecosystems such as forests, grasslands, rivers and lakes. But our findings suggest that small amounts of pollution may also have a positive effect in blocking this important greenhouse gas."

In the wetland study areas, scientists applied several quantities of sulfate, similar to the amounts found in acid rain. The results, acquired over several years, showed that low doses of sulfate reduced methane emissions by 30 to 40 percent. What determines how much methane is produced in wetlands? The answer lies under the microscope. Carbon, heat and moisture are known to influence methane production by single-celled bacteria called Archaea. Under normal conditions, these bacteria "eat" carbon in the soil for energy and release methane as a byproduct. But, many types of bacteria thrive in the wetland environment. When sulfate from acid rain is in wetlands, another type of bacteria that reduce sulfates can out-compete the Archaea, and help limit the amount of methane they produce.



Wetlands may produce as much as 320 million tons of methane annually but only about half of that, or 160 million tons, gets into the atmosphere. The other 160 million tons never makes it. That’s because it is destroyed when it mixes with oxygen as it moves through the soils from wet to dry and up to the surface. Despite the destruction of about half the methane produced, natural wetlands remain the single largest source of methane emissions, accounting for about one third of the global annual total from the Earth. "It’s a complicated problem because many factors from microscopic to global scales interact in these processes," said Elaine Matthews, a scientist at NASA’s Goddard Institute for Space Studies (GISS), New York, and co-author of the study. The maximum emission of methane from wetlands occurs when conditions are warm and wet, while the biggest reduction in methane is achieved when the location of wetlands, sulfates in acid rain, high temperatures and substantial precipitation all come together.

"When we used all the field data with the NASA computer models and applied it to a global scale, it shows that the effect of acid rain from 1960 to 2030 actually reduces methane emissions to below pre-industrial levels," said Gauci. The effect more than compensates for the increase in methane emission that would be expected as wetlands become warmer. In this way, acid rain acts like a temporary lid on the largest methane source. However, experts expect methane emissions to increase over the entire 21st century in response to climate change.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov
http://www.nasa.gov/vision/earth/environment/acid_rain.html

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>