Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unlock mysteries of toxic metals in the largest contaminated site in United States

02.11.2004


Copper mining in Butte and Anaconda, Montana, starting in 1860’s, poisoned the air, the land, and the water; well over 100 years later, contaminants are still found as far as 300 miles down the Clark Fork River, whose headwaters are in that area.



The presence of the contaminants has been known for many decades. But the interaction of the heavy metals and other compounds in the soil, streams, and rivers were unknown until Virginia Tech professor of geosciences Michael Hochella went all the way to the University of Munster, Germany as a Fulbright Scholar, then as a Humboldt Fellow, to use sophisticated equipment that allowed him to examine lead, arsenic and other materials at the nanometer level (a nanometer being about the size of 10 atoms). He will present his findings, including the discovery of a new mineral, at the 116th national meeting of the Geological Society of America in Denver Nov. 7-10.

When the mine was active, ore smelting on the site poured arsenic and sulfur into the air. House cats, because they lick their fur trying to stay clean, died young. People in the area had very pale skin as a result of arsenic poisoning. "Waste material from mining was dumped in piles that now cover hundreds of acres of land," said Hochella. "This material has been rained on and snowed on for a hundred years and run off into the river. The mining pits have now filled with water, contaminating ground water. If you go into the stream beds and flood plains and dig up muck and dirt, just with a garden trowel, and analyze that dirt, you will find high levels of arsenic, zinc, lead, and copper. Zinc and copper, not ordinarily considered contaminants, are in these concentrations. Nothing grows in these areas."


"So, we knew the metals are there, but we have not known where they reside in the streams and soils," said Hochella. "Is the lead associated with other minerals or with biological material, or is it in a separate phase? No one knew." To predict bioavailability and movement, you need to know what holds the metal, he said.

Hochella used a transmission electron microscope (TEM) to take a close look. "It takes months. You have to prepare the samples properly before you do the microscopy. But then you can magnify the material by hundreds of thousands of time. With that magnification, you can find what you are looking for," Hochella said.

Hochella, Munster professor Andrew Putnis, and Japanese post-doc Takeshi Kasama looked at samples and found important minerals three to 200 nanometers in size. "We found what we think is a new mineral, a manganese oxide hydrate that takes up lead, arsenic, copper, and zinc like a sponge. We hadn’t even known it was there."

The researchers also found another iron oxide mineral that is well known, ferrihydrite, that had been thought to be the most active phase for taking up the contaminant metals. " And we found other minerals that take up these metals. But the manganese mineral is much more reactive then even the ferrihydrite," Hochella said. "We were not necessarily surprised," he said. "Former PhD student Erin O’Reilly did related lab experiments that showed this activity. But now we’ve found a real case in nature."

The next step is to find out what the presence of manganese does to the bioavailability of the toxic minerals, he said. Virginia Tech will be purchasing a new TEM soon for this and other research that requires extremely high magnification.

Pyrite, which is plentiful throughout the mining area, breaks down in weathering environments – from sulfides to sulfates – then reforms to sulfides in the stream, taking up heavy metals as it crystallizes. "These are extremely tiny crystals, a couple of nanometers, and are very reactive," Hochella said. "It allows the metals to be bioavailable, when it gets on a fish’s gills, for instance."

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>