Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unlock mysteries of toxic metals in the largest contaminated site in United States

02.11.2004


Copper mining in Butte and Anaconda, Montana, starting in 1860’s, poisoned the air, the land, and the water; well over 100 years later, contaminants are still found as far as 300 miles down the Clark Fork River, whose headwaters are in that area.



The presence of the contaminants has been known for many decades. But the interaction of the heavy metals and other compounds in the soil, streams, and rivers were unknown until Virginia Tech professor of geosciences Michael Hochella went all the way to the University of Munster, Germany as a Fulbright Scholar, then as a Humboldt Fellow, to use sophisticated equipment that allowed him to examine lead, arsenic and other materials at the nanometer level (a nanometer being about the size of 10 atoms). He will present his findings, including the discovery of a new mineral, at the 116th national meeting of the Geological Society of America in Denver Nov. 7-10.

When the mine was active, ore smelting on the site poured arsenic and sulfur into the air. House cats, because they lick their fur trying to stay clean, died young. People in the area had very pale skin as a result of arsenic poisoning. "Waste material from mining was dumped in piles that now cover hundreds of acres of land," said Hochella. "This material has been rained on and snowed on for a hundred years and run off into the river. The mining pits have now filled with water, contaminating ground water. If you go into the stream beds and flood plains and dig up muck and dirt, just with a garden trowel, and analyze that dirt, you will find high levels of arsenic, zinc, lead, and copper. Zinc and copper, not ordinarily considered contaminants, are in these concentrations. Nothing grows in these areas."


"So, we knew the metals are there, but we have not known where they reside in the streams and soils," said Hochella. "Is the lead associated with other minerals or with biological material, or is it in a separate phase? No one knew." To predict bioavailability and movement, you need to know what holds the metal, he said.

Hochella used a transmission electron microscope (TEM) to take a close look. "It takes months. You have to prepare the samples properly before you do the microscopy. But then you can magnify the material by hundreds of thousands of time. With that magnification, you can find what you are looking for," Hochella said.

Hochella, Munster professor Andrew Putnis, and Japanese post-doc Takeshi Kasama looked at samples and found important minerals three to 200 nanometers in size. "We found what we think is a new mineral, a manganese oxide hydrate that takes up lead, arsenic, copper, and zinc like a sponge. We hadn’t even known it was there."

The researchers also found another iron oxide mineral that is well known, ferrihydrite, that had been thought to be the most active phase for taking up the contaminant metals. " And we found other minerals that take up these metals. But the manganese mineral is much more reactive then even the ferrihydrite," Hochella said. "We were not necessarily surprised," he said. "Former PhD student Erin O’Reilly did related lab experiments that showed this activity. But now we’ve found a real case in nature."

The next step is to find out what the presence of manganese does to the bioavailability of the toxic minerals, he said. Virginia Tech will be purchasing a new TEM soon for this and other research that requires extremely high magnification.

Pyrite, which is plentiful throughout the mining area, breaks down in weathering environments – from sulfides to sulfates – then reforms to sulfides in the stream, taking up heavy metals as it crystallizes. "These are extremely tiny crystals, a couple of nanometers, and are very reactive," Hochella said. "It allows the metals to be bioavailable, when it gets on a fish’s gills, for instance."

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>