Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flame retardants cause brain damage in young mice

01.11.2004


Reduced adaptability, hyperactivity, and disturbances in memory and learning functions. These are deficiencies mice and rats evince when exposed to bromide flame retardants, such as those found in computers, textiles, and other materials in our surroundings, during the period when the brain develops most rapidly.



Our environment contains a multitude of pollutants, including bromide flame retardants (polybromide diphenylethers, PBDEs) used in plastics, electronic circuit boards, computers, construction materials, and synthetic textiles. Both in Sweden and around the globe PBDEs are wide-spread, and ever greater concentrations have been found in the environment, as well as in human breast milk, over the last few decades. An individual can be exposed to PBDEs throughout his/her lifetime, including the breast-feeding period, when substances are transmitted to the infant via breast milk.

In many mammals, the so-called neo-natal period is characterized by rapid development and growth of the undeveloped brain. It has previously been shown that various toxic substances can induce permanent injuries to the brain function in mice exposed during this period of development. In mice and rats this phase lasts through the first 3-4 weeks after birth. In humans, on the other hand, it starts during the third trimester of pregnancy and continues throughout the first two years of life.


In his dissertation, Henrik Viberg has identified a definable critical phase during the period of rapid development and growth of the brain, when the brain is extremely sensitive to low doses of PBDEs. He demonstrates that the presence of PBDEs, and/or their metabolites, in the brain during this critical phase led to permanently altered spontaneous behavior, reduced adaptability to new environments, and hyperactivity in the adult individual­-deficiencies that grew worse with age. Moreover, there were disturbances in memory and learning functions in adult individuals as well as changes in the so-called cholinergic system, which is tied to behavior, memory, and learning. The capacity of PBDEs to cause these neurotoxic effects does not seem to be dependent on sex, lineage, or species.

The fact that PBDEs themselves can induce neurotoxic developmental effects and that these effects are similar to those previously observed regarding polychloride biphenyls (PBCs) means that greater attention should be paid to the neurotoxic impact of PBDEs-­and possible cumulative effects between PBDEs and other pollutants in our environment.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.vr.se

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>