Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flame retardants cause brain damage in young mice

01.11.2004


Reduced adaptability, hyperactivity, and disturbances in memory and learning functions. These are deficiencies mice and rats evince when exposed to bromide flame retardants, such as those found in computers, textiles, and other materials in our surroundings, during the period when the brain develops most rapidly.



Our environment contains a multitude of pollutants, including bromide flame retardants (polybromide diphenylethers, PBDEs) used in plastics, electronic circuit boards, computers, construction materials, and synthetic textiles. Both in Sweden and around the globe PBDEs are wide-spread, and ever greater concentrations have been found in the environment, as well as in human breast milk, over the last few decades. An individual can be exposed to PBDEs throughout his/her lifetime, including the breast-feeding period, when substances are transmitted to the infant via breast milk.

In many mammals, the so-called neo-natal period is characterized by rapid development and growth of the undeveloped brain. It has previously been shown that various toxic substances can induce permanent injuries to the brain function in mice exposed during this period of development. In mice and rats this phase lasts through the first 3-4 weeks after birth. In humans, on the other hand, it starts during the third trimester of pregnancy and continues throughout the first two years of life.


In his dissertation, Henrik Viberg has identified a definable critical phase during the period of rapid development and growth of the brain, when the brain is extremely sensitive to low doses of PBDEs. He demonstrates that the presence of PBDEs, and/or their metabolites, in the brain during this critical phase led to permanently altered spontaneous behavior, reduced adaptability to new environments, and hyperactivity in the adult individual­-deficiencies that grew worse with age. Moreover, there were disturbances in memory and learning functions in adult individuals as well as changes in the so-called cholinergic system, which is tied to behavior, memory, and learning. The capacity of PBDEs to cause these neurotoxic effects does not seem to be dependent on sex, lineage, or species.

The fact that PBDEs themselves can induce neurotoxic developmental effects and that these effects are similar to those previously observed regarding polychloride biphenyls (PBCs) means that greater attention should be paid to the neurotoxic impact of PBDEs-­and possible cumulative effects between PBDEs and other pollutants in our environment.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.vr.se

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>