Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil Scientist Controls Erosion to Restore West Africa’s Sahel

01.11.2004


An Iowa State University agronomy professor is using erosion control methods to restore the Sahel and Niger River in West Africa.


Sedimentation in the Niger River has decreased soil fertility and threatens the economic stability of the region.


West Africans look over the erosion control methods used to inhibit sediment pollution in the Niger River.



Andrew Manu, associate professor of soil science, has been working with the people of Niger to restore degraded lands in the Sahel, the region of West Africa that separates the Sahara Desert from the savannah. Land degradation is threatening the economic stability of the region. “There is hope in the Sahel,” Manu said. “We can restore the Sahel and make it work for the people.”

Manu will present his findings at the 2004 international annual meetings of the American Society of Agronomy, Crop Science Society of America and Soil Science Society of America in Seattle, Wash., Oct. 31 to Nov. 5.


The Sahel has degraded because large human and livestock populations and increased cultivation have reduced native vegetation in the area. As a result, excessive runoff has increased erosion and decreased soil fertility. Sediment carried by the runoff is deposited into the Niger River, where it creates alluvial fans—unproductive landforms made of the transported soil and rock from the Sahel. Manu and his colleagues devised a way to prevent further erosion and sediment deposits through reforestation using microcatchments.

“Microcatchments are crescent-shaped trenches, about four feet in length, built on plateaus in the path of erosion,” Manu said. “The trenches catch and hold moving water and sediment, preventing sediment from polluting the river. We plant trees and vegetation in the trenches to use collected water, and provide extra ground cover to further reduce erosion. People in the area also use the trees for firewood and lumber and the grasses as pasture for livestock.”

Manu is working with Niger’s Department of the Environment and National Agricultural Institute to promote the use of microcatchments in plateaus along the river.

While the biggest impact of his work is felt in the villages of this West African country, Manu said his research has implications in Iowa.

“The world is a global village now – whatever happens in Niger affects us here in Iowa. These solutions may be used elsewhere in the future, perhaps in Iowa, to solve similar erosion problems,” Manu said.

Using archived satellite imagery and modeling technology, Manu recreated the way the Niger River looked in 1973 and 1988. He compared the previous and present conditions of the river near Niamey, the capital of Niger. Manu said the Niger River was in near pristine condition in 1973; however, by 1988, some branches of the river had been closed by sediment. Today, sediment has damaged water quality and created large unproductive alluvial fans that obstruct the river.

In addition to the use of microcatchments, Manu also suggests stricter environmental regulations to prevent people from removing erosion barriers, such as trees and soil, from affected areas. Manu plans further research to study the impact of the microcatchments on soil quality in the area.

| newswise
Further information:
http://www.iastate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Calculating recharge of groundwater more precisely
28.02.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>