Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil Scientist Controls Erosion to Restore West Africa’s Sahel

01.11.2004


An Iowa State University agronomy professor is using erosion control methods to restore the Sahel and Niger River in West Africa.


Sedimentation in the Niger River has decreased soil fertility and threatens the economic stability of the region.


West Africans look over the erosion control methods used to inhibit sediment pollution in the Niger River.



Andrew Manu, associate professor of soil science, has been working with the people of Niger to restore degraded lands in the Sahel, the region of West Africa that separates the Sahara Desert from the savannah. Land degradation is threatening the economic stability of the region. “There is hope in the Sahel,” Manu said. “We can restore the Sahel and make it work for the people.”

Manu will present his findings at the 2004 international annual meetings of the American Society of Agronomy, Crop Science Society of America and Soil Science Society of America in Seattle, Wash., Oct. 31 to Nov. 5.


The Sahel has degraded because large human and livestock populations and increased cultivation have reduced native vegetation in the area. As a result, excessive runoff has increased erosion and decreased soil fertility. Sediment carried by the runoff is deposited into the Niger River, where it creates alluvial fans—unproductive landforms made of the transported soil and rock from the Sahel. Manu and his colleagues devised a way to prevent further erosion and sediment deposits through reforestation using microcatchments.

“Microcatchments are crescent-shaped trenches, about four feet in length, built on plateaus in the path of erosion,” Manu said. “The trenches catch and hold moving water and sediment, preventing sediment from polluting the river. We plant trees and vegetation in the trenches to use collected water, and provide extra ground cover to further reduce erosion. People in the area also use the trees for firewood and lumber and the grasses as pasture for livestock.”

Manu is working with Niger’s Department of the Environment and National Agricultural Institute to promote the use of microcatchments in plateaus along the river.

While the biggest impact of his work is felt in the villages of this West African country, Manu said his research has implications in Iowa.

“The world is a global village now – whatever happens in Niger affects us here in Iowa. These solutions may be used elsewhere in the future, perhaps in Iowa, to solve similar erosion problems,” Manu said.

Using archived satellite imagery and modeling technology, Manu recreated the way the Niger River looked in 1973 and 1988. He compared the previous and present conditions of the river near Niamey, the capital of Niger. Manu said the Niger River was in near pristine condition in 1973; however, by 1988, some branches of the river had been closed by sediment. Today, sediment has damaged water quality and created large unproductive alluvial fans that obstruct the river.

In addition to the use of microcatchments, Manu also suggests stricter environmental regulations to prevent people from removing erosion barriers, such as trees and soil, from affected areas. Manu plans further research to study the impact of the microcatchments on soil quality in the area.

| newswise
Further information:
http://www.iastate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>