Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large-Scale Forces Shape Local Ocean Life, Global Study Shows

21.10.2004


Ecological research, 30 feet down - Jon Witman, professor of biology, photographs an 18-by-24-inch sample of a Caribbean rock wall. He and his team produced and analyzed more than 1,500 such marine images from around the world.


Latitude matters - A photographic sample taken from a ledge off Cape Town, South Africa, is packed with sponges, anemones, soft corals, sea fans and bryzoans, whose name, taken from the Greek, means “moss animals.”


In an epic research project spanning 14 years and seven continents, a research team based at Brown University has photographed and cataloged nearly 3,000 species of sponges, corals and other shallow water ocean invertebrates from Antarctica to Australia. The key finding: Large-scale forces play a pivotal role in local species diversity. Results are published in the current online early edition of the Proceedings of the National Academy of Sciences.

In a groundbreaking, globetrotting study of sea life in shallow waters, a research team led by a Brown University marine ecologist has found that the richness of species diversity in a small patch of ocean is powerfully shaped by far-away forces.

Jon Witman, associate professor of biology at Brown, said this finding was a surprise. At the start of the project, Witman expected to find that forces specific to a small area of ocean – predation, species competition and disturbances such as hurricanes or landslides – would play a central role in limiting the number of species found there.



But Witman and his team found that species diversity in local areas, no bigger than a half-mile square, was directly proportional to species diversity in that region, which can span thousands of square miles. Researchers came to this conclusion after examining 1,500 photographic samples taken of invertebrates clinging to rock walls in every corner of the world.

For example, Witman and his team sampled five sites from Maine to Massachusetts and found anywhere from 26 to 51 species. This reflects the comparatively low marine diversity in the Gulf of Maine. In contrast, in the warm, teeming waters off of the Palau Islands near the Philippines, divers counted as many as 300 species living in an area smaller than a basketball court. This reflects the high level of diversity found in Micronesia. With a few exceptions, these patterns held true around the globe.

Witman believes that local interactions, such as storms and predators, still exert a strong influence on biodiversity, but the associate professor in the Department of Ecology and Evolutionary Biology now sees that regional forces are critical to maintaining species variation. These large-scale influences include currents that disperse larvae across hundreds of miles or the creation of new species caused by geological upheaval and biotic isolation millions of years ago. Global warming and pollution are other regional forces that can impact local diversity. “The work is a wake-up call,” Witman said. “We need to think about regional processes if we want to preserve biodiversity.”

Witman said results from the project, published in the current early online edition of the Proceedings of the National Academy of Sciences, have implications for conservation efforts.

Governments or non-profits interested in maintaining biodiversity in the ocean – or on land – shouldn’t simply create single preserves or parks. Instead, Witman said, they should create as many as possible across a broad area. Of particular importance, he said, is safeguarding “source areas” for high biodiversity that act as wellsprings of eggs, seeds or vital nutrients or that provide important habitat for critical species. While scientists know that tropical coral reefs and the Amazon rainforest act as source areas, Witman said more areas must be identified. “This is particularly true in the marine environment,” he said. “We don’t know much about source pools. We need a lot more research in this area.”

The project focused on invertebrate species found in shallow water, such as sponges, corals, mollusks, worms, barnacles, anemones, urchins and sea fans. These animals were studied in one habitat: flat, vertical rock walls, such as ones found along reefs, in fjords, or in other parts of coastline. Witman said the choice was practical: These invertebrates can’t move, so they could be counted. And rock walls can be found from the poles to coral reefs and leave few places for creatures to hide, so estimates would be comparable and highly accurate.

To get a true snapshot of the diversity of these species around the world, Witman and his team chose 12 distinct biogeographic regions and randomly sampled at a total of 49 sites within these regions, which included the Gulf of Maine, Iceland, the Northeast Pacific, the Galapagos Islands, Chilean Patagonia, the Antarctic Peninsula, the Eastern Caribbean, Southwest Africa, Southwest New Zealand, the Seychelles Islands, the Norfolk Islands and the Palau Islands.

At each site, scientists dove down 30 to 50 feet below the surface. Then they took standard-sized (18 by 24 inches) photographs of a rock wall area. They took anywhere from 18 to 200 of these photo samples at each site. Back in the lab, they examined a total of 1,500 slides and counted the species found in each frame.

The project took more than 14 years to complete. It led to another key finding: Latitude also plays a big role in local species richness.

At the poles, partly due to the harsh environment and glacial scouring, there are fewer species. But moving closer to the equator, the number of species increases. While this is a long-held and widely accepted phenomenon on land, it has been brought into question in the past decade as scientists have found a surprisingly varied array of ocean animals in Antarctica. This is the first global study to show that latitude affects species richness in shallow-water ocean animals.

The research team also included Ron Etter, a professor of biology at the University of Massachusetts–Boston and Franz Smith, a former research associate of Witman’s who is currently a marine scientist in New Zealand

The National Science Foundation primarily funded the work. The National Undersea Research Program, the Andrew Mellon Foundation, and the Helen and Merrill Bank Foundation also provided support.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>