Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laboratory test of evolutionary theory confirms importance of links between populations

14.10.2004


Researchers studying the evolutionary dynamics of bacteria and viruses in bubbling glass tubes have confirmed an evolutionary theory of central importance to ecologists studying more familiar flora and fauna in the wild. The theory predicts how the movement of individuals between different populations of a species influences evolutionary change in those populations, particularly with respect to coevolutionary interactions between species.



This is an important issue in understanding the long-term effects of the increasing fragmentation of natural habitats due to human activities. Many ecologists believe that fragmentation of the natural landscape, by separating communities of organisms that had been connected, has the potential to alter the evolutionary processes that enable organisms to adapt to changing local conditions. This study provides hard evidence to support that view.

The study, published in the October 14 issue of the journal Nature, looked at the coevolution of a common type of bacteria, Escherichia coli, and a virus that infects it, called bacteriophage T7. The researchers were able to track adaptations that arose in both bacteria and virus populations and show that the pattern of adaptations depended on both the environment in which the organisms were growing and the spread of genes between different populations. Ecologists use the term "gene flow" to describe the spread of genetic variants that accompanies the movements of individuals. This study provides the first direct empirical evidence that gene flow across a heterogeneous landscape can alter the dynamics of coevolution. "By working with microbes that go through about ten generations per day in the laboratory, we were able to track evolutionary changes through time and answer questions that previously had only been addressed theoretically," said Samantha Forde, a postdoctoral researcher at the University of California, Santa Cruz, and first author of the paper.


Forde’s coauthors are John Thompson, professor of ecology and evolutionary biology at UCSC, and microbial ecologist Brendan Bohannan of Stanford University. Forde conducted the study as a postdoctoral researcher in Bohannan’s lab at Stanford.

According to Thompson, the history of evolution and the diversification of life on Earth is fundamentally a history of the evolution of species interactions, or coevolution. Thompson is a leading proponent of the geographic mosaic theory of coevolution, which emphasizes that every species is a collection of genetically distinct populations that are linked across landscapes, resulting in complex geographic mosaics of species interactions that can evolve differently in different locations. "We have a pretty solid theoretical framework for explaining coevolutionary interactions between species and how coevolution organizes biodiversity through networks of interactions across landscapes," Thompson said. "These experiments are one step in actually translating that theory into predictive analyses of natural populations."

The experiments used a simplified system in the laboratory to test the predictions of the theory. The basic coevolutionary dynamics of E. coli bacteria and bacteriophage T7 are well known. When T7 is introduced to a population of E. coli, the bacteria soon evolve resistance to the virus. The virus, in turn, evolves to attack the resistant bacteria, and then the bacteria are able to evolve a second level of resistance to the more potent form of the virus. According to Bohannan, microbial experimental systems have become increasingly popular in ecology, due in part to the degree of control they offer and their relative simplicity. "Coevolutionary change happens rapidly in these communities and can be easily detected. Furthermore, the genes underlying these coevolutionary changes are known and accessible to study," Bohannan said.

Forde set up microbial communities of bacteria and viruses with different nutrient levels in a series of chemostats--glass culture tubes that provide nutrients and oxygen and siphon off wastes. In one set of chemostats the communities remained isolated from one another. In another set, Forde periodically made a series of transfers between communities, sucking up a pipette full of bacteria and viruses from one chemostat and adding it to the next one, and so on down the line. She also periodically analyzed the populations of bacteria and viruses in each community. "I created in the laboratory a fragmented landscape with communities of microbes growing in different local environments, and then I looked at what happens over time when the fragments are isolated and when there is gene flow between fragments," Forde said.

In the isolated communities, resistant bacteria--and viruses able to overcome that resistance--evolved more rapidly in the chemostats with high nutrient levels than in those with low nutrients. That’s because the microbes multiplied more rapidly in the high-nutrient environment, resulting in more opportunities for favorable mutations to arise.

The dynamics of coevolution were altered, however, by the dispersal of organisms between communities. In general, dispersal from high-nutrient to lower-nutrient communities sped up the rate of adaptation in the lower-nutrient communities by bringing in novel genetic mutations. Forde also found that gene flow increased the variation in coevolutionary dynamics through time. "We had a pretty simple system, but the results were relatively complex. We found that adaptation can vary in both space and time across a heterogeneous landscape. It’s mind-boggling to think about how these kinds of coevolutionary interactions could vary in nature when so many other factors are involved," Forde said.

Thompson has spent decades studying the mind-boggling variability of coevolutionary interactions in nature, with much of his work focusing on interactions between plants and the insects that pollinate flowers and feed on plant parts. Both the ecology and the genetics involved in these natural systems are highly complicated, however, and even long-term studies can only address a limited number of questions, he said. "This laboratory system gives us a halfway ground between the mathematical models and natural populations. It allows us to test whether our assumptions are realistic, and that puts us in a better position to design experiments in natural populations," Thompson said.

Forde has also done extensive research on natural populations, studying invertebrate communities on rocky shorelines as a graduate student at UCSC. But she isn’t done with the microbes in the chemostats yet. She has stored samples from the chemostat experiments in a freezer, awaiting genetic analysis. She plans to look at the genes involved in the coevolutionary interactions, identify specific mutations, and trace the genetic dynamics of the interactions through time. "It’s like having a fossil record of the viruses and bacteria. I can study their genes and see how dispersal influenced their evolutionary histories," Forde said.

In addition to providing general insight into the process of coevolution, understanding of the evolutionary dynamics of microorganisms is crucial to a number of fields, including human medicine, Bohannan said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>