Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global air pollution map produced by Envisat’s SCIAMACHY

12.10.2004


Based on 18 months of Envisat observations, this high-resolution global atmospheric map of nitrogen dioxide pollution makes clear just how human activities impact air quality.



ESA’s ten-instrument Envisat, the world’s largest satellite for environmental monitoring, was launched in February 2002. Its onboard Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instrument records the spectrum of sunlight shining through the atmosphere. These results are then finely sifted to find spectral absorption ’fingerprints’ of trace gases in the air. Nitrogen dioxide (NO2) is a mainly man-made gas, excess exposure to which causes lung damage and respiratory problems. It also plays an important role in atmospheric chemistry, because it leads to the production of ozone in the troposphere – which is the lowest part of the atmosphere, extending up to between eight and 16 kilometres high.

Nitrogen dioxide is produced by emissions from power plants, heavy industry and road transport, along with biomass burning. Lightning in the air also creates nitrogen oxides naturally, as does microbial activity in the soil.
Localised in-situ measurements of atmospheric nitrogen dioxide are carried out in many western industrial countries, but ground-based data sources are generally thin on the ground.



Space-based sensors are the only way to carry out effective global monitoring: the first satellite sensitivity to tropospheric nitrogen dioxide was demonstrated with the Global Ozone Monitoring Experiment (GOME) on ESA’s ERS-2. However GOME was only a sub-scale precursor of the German, Dutch and Belgian financed SCIAMACHY flying on Envisat.

While both instruments function in the same way, GOME has a limited spatial resolution of only 320 x 40 km, compared to a typical 60 x 30 km with SCIAMACHY, which also observes the atmosphere in two different views –downwards or ’nadir’ looking as well as making ’limb’ observations in the direction of flight – and has a significantly larger spectral range than its predecessor.

Teams from the Universities of Bremen and Heidelberg in Germany, the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Royal Netherlands Meteorological Institute (KNMI) have successfully processed SCIAMACHY data to generate the sharpest maps yet made of the vertical columns of tropospheric nitrogen dioxide. "The higher spatial resolution delivered by SCIAMACHY means we see a lot of detail in these global images, even resolving individual city sources" said Steffen Beirle of the University of Heidelberg’s Institute for Environmental Physics, responsible for the map shown above.

"High vertical column distributions of nitrogen dioxide are associated with major cities across North America and Europe, along with other sites such as Mexico City in Central America and South African coal-fired power plants located close together in the eastern Highveld plateau of that country. "Then a very high concentration is found above north eastern China. Also across South East Asia and much of Africa can be seen nitrogen dioxide produced by biomass burning. Ship tracks are visible in some locations: look at the Red Sea and the Indian Ocean between the southern tip of India and Indonesia. The smoke stacks of ships crossing these routes send a large amount of NO2 into the troposphere.

This map is average out across all available data, spanning 18 months. This has the effects of reducing seasonal variations in biomass burning and also those due to human activity changes due to the time of year." Like GOME, SCIAMACHY works by observing atmosphere-scattered ultraviolet, visible and near-infrared radiation. The hard work comes on the ground, where researchers attempt to retrieve very weak trace gas absorption patterns within the overall spectrum of backscattered light, a feat comparable to finding a needle in a haystack.

The method they use is called Differential Optical Absorption Spectroscopy (DOAS), which is basically a complex filtering process also used with ground-based air-sampling instruments. DOAS removes the predominant spectral ’noise’ from air particles’ Rayleigh scattering of light (the same phenomenon that causes the sky appear blue) along with the absorption patterns from the oxygen, nitrogen and water molecules that make up most of the atmosphere.

Left behind after these subtractions is the desired ’signal’ of narrower trace gas spectral absorption patterns, to be identified against sample cross sections. Applied to SCIAMACHY results, this technique is sufficiently sensitive to retrieve columns lower than a few parts of nitrogen dioxide per billion parts of air. To give an idea of scale, above highly polluted conurbations such as London, NO2 mixing ratios can reach values as high as a hundred parts per billion.

Nitrogen dioxide maps like that shown here have been produced using nadir-sounding data: while NO2 vary widely across the troposphere they are evenly spread across the upper atmosphere, the stratosphere. So nitrogen dioxide levels measured above the remotest parts of the Pacific were used to determine a general column for stratospheric nitrogen dioxide, which could be subtracted from the global data to determine tropospheric vertical column values.

"Results from this and other similar sensors could be used for chemical weather and air quality prediction in future," Beirle added. "For now we are focused on using the SCIAMACHY results to quantify the contributions of the different sources of nitrogen oxides – such as fossil fuel combustion, biomass burning, lightning – especially as the value of the latter is still highly uncertain."

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>