Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT: recycling of scrapped electronics studied

08.10.2004


MIT researchers have developed new metrics for assessing the performance of firms that recycle scrapped electronic equipment, a major source of toxic pollutants.



The metrics focus not just on how much of a firm’s incoming waste is processed but also on the quality and reusability of the materials produced from it, a consideration critical to overall resource efficiency.

To assess the performance of electronics recycling firms, people have focused mainly on the most easily measured indicator: the fraction of a firm’s incoming waste stream that ends up as landfill. But minimizing landfill is not enough, according to the MIT researchers.


"Recycling companies will tell their customers, ’Virtually none of your material is going to landfill.’ While we recognize that that’s important, we also know that not all end uses are equal," said Randolph E. Kirchain Jr., an assistant professor in the Department of Materials Science and Engineering and the Engineering Systems Division. "For example, it’s preferable to take a pound of recovered plastic and use it to make new components than to use it as roadbed filler."

The quality of the recovered material determines its potential uses. If the quality is sufficiently high, the material can be reused by manufacturers, reducing the need to extract and consume new materials.

Almost a billion obsolete computers and other electronic devices are scrapped each year, and four out of five of them end up in basements or on sidewalks rather than in recycling facilities. But the electronics recycling business is expected to grow quickly. Regulations on handling large-scale electronics waste streams are becoming more stringent, and public concern is growing about the shipping of electronics to countries not equipped to handle toxic and hazardous materials.

Kirchain worked with Frank Field III, a senior research associate in the Center for Technology, Policy and Industrial Development, and Jennifer R. Atlee, a graduate student in the Engineering Systems Division, and colleagues in the Materials Systems Laboratory to develop measures of assessing electronics recycling firms. The team drew on its 10 years’ experience studying another recycling industry--automobiles.

To identify recycling firms and processes that achieve good materials recovery, the researchers use price as an indicator of quality. "We hypothesize that the price that’s received for those [recovered] materials is an indicator of the quality of the materials. A buyer will pay more for materials they can use in manufacturing components than for materials going into a roadbed," said Kirchain.

They also used two value-based metrics-value retention and value-added. Value retention measures how well the value of materials is maintained all the way from their first use to their recovery. Value added compares the price of the recovered material to the price the recycler paid or was paid to take it away.

In case studies of three U.S. firms, the researchers found that the value-based metrics worked well and were easy to use. The researchers stress that their materials-only analysis is just a baseline and does not incorporate the effect of device or component reuse. They also note that other criteria could be used to assess the performance of recyclers. Examples include toxicity, emissions, energy use, and operating costs. In the long run, a variety of independent metrics could lead to significant improvements in recycling efficiency.

"We’re interested in measures of performance that will lead to the best electronics-recycling practices. But if we really understand the recycling process, we may also be able to help manufacturers of original equipment make design and materials choices that will make recovering, recycling, and reusing materials less expensive," said Kirchain.

This research marks the beginning of a long-term MIT effort to develop analytical methods and tools that the electronics industry can use to identify and select materials, product designs and process technologies that will improve the sustainability of materials use. It was supported by the Alliance for Global Sustainability.

Nancy Stauffer | MIT News Office
Further information:
http://ww.mit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dead trees are alive with fungi
10.01.2018 | Helmholtz Centre for Environmental Research (UFZ)

nachricht Management of mountain meadows influences resilience to climate extremes
10.01.2018 | Max-Planck-Institut für Biogeochemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>