Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT: recycling of scrapped electronics studied

08.10.2004


MIT researchers have developed new metrics for assessing the performance of firms that recycle scrapped electronic equipment, a major source of toxic pollutants.



The metrics focus not just on how much of a firm’s incoming waste is processed but also on the quality and reusability of the materials produced from it, a consideration critical to overall resource efficiency.

To assess the performance of electronics recycling firms, people have focused mainly on the most easily measured indicator: the fraction of a firm’s incoming waste stream that ends up as landfill. But minimizing landfill is not enough, according to the MIT researchers.


"Recycling companies will tell their customers, ’Virtually none of your material is going to landfill.’ While we recognize that that’s important, we also know that not all end uses are equal," said Randolph E. Kirchain Jr., an assistant professor in the Department of Materials Science and Engineering and the Engineering Systems Division. "For example, it’s preferable to take a pound of recovered plastic and use it to make new components than to use it as roadbed filler."

The quality of the recovered material determines its potential uses. If the quality is sufficiently high, the material can be reused by manufacturers, reducing the need to extract and consume new materials.

Almost a billion obsolete computers and other electronic devices are scrapped each year, and four out of five of them end up in basements or on sidewalks rather than in recycling facilities. But the electronics recycling business is expected to grow quickly. Regulations on handling large-scale electronics waste streams are becoming more stringent, and public concern is growing about the shipping of electronics to countries not equipped to handle toxic and hazardous materials.

Kirchain worked with Frank Field III, a senior research associate in the Center for Technology, Policy and Industrial Development, and Jennifer R. Atlee, a graduate student in the Engineering Systems Division, and colleagues in the Materials Systems Laboratory to develop measures of assessing electronics recycling firms. The team drew on its 10 years’ experience studying another recycling industry--automobiles.

To identify recycling firms and processes that achieve good materials recovery, the researchers use price as an indicator of quality. "We hypothesize that the price that’s received for those [recovered] materials is an indicator of the quality of the materials. A buyer will pay more for materials they can use in manufacturing components than for materials going into a roadbed," said Kirchain.

They also used two value-based metrics-value retention and value-added. Value retention measures how well the value of materials is maintained all the way from their first use to their recovery. Value added compares the price of the recovered material to the price the recycler paid or was paid to take it away.

In case studies of three U.S. firms, the researchers found that the value-based metrics worked well and were easy to use. The researchers stress that their materials-only analysis is just a baseline and does not incorporate the effect of device or component reuse. They also note that other criteria could be used to assess the performance of recyclers. Examples include toxicity, emissions, energy use, and operating costs. In the long run, a variety of independent metrics could lead to significant improvements in recycling efficiency.

"We’re interested in measures of performance that will lead to the best electronics-recycling practices. But if we really understand the recycling process, we may also be able to help manufacturers of original equipment make design and materials choices that will make recovering, recycling, and reusing materials less expensive," said Kirchain.

This research marks the beginning of a long-term MIT effort to develop analytical methods and tools that the electronics industry can use to identify and select materials, product designs and process technologies that will improve the sustainability of materials use. It was supported by the Alliance for Global Sustainability.

Nancy Stauffer | MIT News Office
Further information:
http://ww.mit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>