Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Food crops worth millions lost due to ozone


University of York calculates huge economic impact of ozone

Increased ozone concentrations at ground level may be causing millions of pounds of damage to UK food crops, according to a University of York researcher. Building on a previous study on ozone concentrations in the environment, which estimated that in 1990 alone the UK lost £130million in crops due to ozone taken up by plants, Dr Lisa Emberson of the Stockholm Environment Institute has been developing new methods to calculate the amount of ozone that agricultural crops absorb.

Her figures incorporate factors such as species-specific and environmental conditions (e.g. growing season, drought and humidity) that, in combination with ozone concentrations, determine plant susceptibility. Applying this new method for the UK, the loss of production in two staple crops, wheat and potato, translates into economic losses of approximately £70million and £14million respectively. The scale of damage varies by region according to ozone levels, climate, and crop distribution.

The figures only take into account the effect on the quantity or yield of the crop, and do not include other ozone damage such as leaf injury or poor grain quality. Work is now underway to assess the threat to maize, tomato, sunflower and sugar beet – economically important crops which are sensitive to ozone. Ozone is a naturally occurring atmospheric gas. High up in the earth’s atmosphere, it plays a crucial role in filtering out harmful ultraviolet radiation that would otherwise damage life on earth. However, at ground level, it damages human health, vegetation and materials and is also a potent greenhouse gas.

Before industrialisation, annual mean ozone concentrations were between 10 to 15 parts per billion (ppb). Concentrations have now risen to around 30 ppb, and hot sunny days in the UK lead to concentrations that can exceed 100 ppb. Dr Emberson said: “Research into the effects of ozone on UK crops is remarkably limited given the economic implications of the problem. Most research has focused on visible injuries or reductions in yield rather than nutritional content.” Dr Emberson says ozone is a significant global problem. Concentrations have been increasing in many parts of the world, particularly in Asia where crop losses may hit the poor the hardest. “It’s crucial to agricultural management to understand the combined stresses of ozone pollution and climate, especially given the projected increase in background ozone concentrations and changes in climate likely to occur in coming decades,” she added.

Dr Emberson is co-editor of the recently-published ‘Air Pollution Impacts on Crops and Forests’ which has collated key studies in which the Asian region was identified as facing the most serious risks to agricultural productivity both now and in the future.

The Stockholm Environment Institute at York has established an Air Pollution Crop Effect Network, and a workshop in Bangkok organised by Dr Emberson brought together 30 delegates from 15 different countries to initiate a co-ordinated effort to assess air pollution impacts across the south Asian region. Further details of this project can be found at

Dr Lisa Emberson | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>