Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food crops worth millions lost due to ozone

08.10.2004


University of York calculates huge economic impact of ozone



Increased ozone concentrations at ground level may be causing millions of pounds of damage to UK food crops, according to a University of York researcher. Building on a previous study on ozone concentrations in the environment, which estimated that in 1990 alone the UK lost £130million in crops due to ozone taken up by plants, Dr Lisa Emberson of the Stockholm Environment Institute has been developing new methods to calculate the amount of ozone that agricultural crops absorb.

Her figures incorporate factors such as species-specific and environmental conditions (e.g. growing season, drought and humidity) that, in combination with ozone concentrations, determine plant susceptibility. Applying this new method for the UK, the loss of production in two staple crops, wheat and potato, translates into economic losses of approximately £70million and £14million respectively. The scale of damage varies by region according to ozone levels, climate, and crop distribution.


The figures only take into account the effect on the quantity or yield of the crop, and do not include other ozone damage such as leaf injury or poor grain quality. Work is now underway to assess the threat to maize, tomato, sunflower and sugar beet – economically important crops which are sensitive to ozone. Ozone is a naturally occurring atmospheric gas. High up in the earth’s atmosphere, it plays a crucial role in filtering out harmful ultraviolet radiation that would otherwise damage life on earth. However, at ground level, it damages human health, vegetation and materials and is also a potent greenhouse gas.

Before industrialisation, annual mean ozone concentrations were between 10 to 15 parts per billion (ppb). Concentrations have now risen to around 30 ppb, and hot sunny days in the UK lead to concentrations that can exceed 100 ppb. Dr Emberson said: “Research into the effects of ozone on UK crops is remarkably limited given the economic implications of the problem. Most research has focused on visible injuries or reductions in yield rather than nutritional content.” Dr Emberson says ozone is a significant global problem. Concentrations have been increasing in many parts of the world, particularly in Asia where crop losses may hit the poor the hardest. “It’s crucial to agricultural management to understand the combined stresses of ozone pollution and climate, especially given the projected increase in background ozone concentrations and changes in climate likely to occur in coming decades,” she added.

Dr Emberson is co-editor of the recently-published ‘Air Pollution Impacts on Crops and Forests’ which has collated key studies in which the Asian region was identified as facing the most serious risks to agricultural productivity both now and in the future.

The Stockholm Environment Institute at York has established an Air Pollution Crop Effect Network, and a workshop in Bangkok organised by Dr Emberson brought together 30 delegates from 15 different countries to initiate a co-ordinated effort to assess air pollution impacts across the south Asian region. Further details of this project can be found at http://www.york.ac.uk/inst/sei/rapidc2/impactscrops.html

Dr Lisa Emberson | alfa
Further information:
http://www.york.ac.uk/inst/sei/rapidc2/impactscrops.html
http://www.york.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>