Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic sea ice declines again in 2004

05.10.2004


Researchers at the University of Colorado at Boulder have found that the extent of Arctic sea ice, the floating mass of ice that covers the Arctic Ocean, is continuing its rapid decline.



The latest satellite information indicates the September 2004 sea ice extent was 13.4 percent below average, a reduction in area nearly twice the size of Texas, said Mark Serreze of CU-Boulder’s National Snow and Ice Data Center, or NSIDC. In 2002, the decline in arctic sea ice during September -- which traditionally marks the end of the summer melt season -- was about 15 percent, a record low, said CU-Boulder researcher Walt Meier of NSIDC.

The decline in sea ice extent during September has averaged about 8 percent over the past decade, said Serreze, who is part of a CU-Boulder team monitoring Arctic sea-ice conditions. "This is the third year in a row with extreme ice losses, pointing to an acceleration of the downward trend," he said.


"While a ’low’ September ice extent one year is often followed by a recovery the next year, this was not the case in 2003, which was about 12 percent below average," Serreze said. The September 2004 sea-ice loss was especially evident in extreme northern Alaska and eastern Siberia. The CU-Boulder researchers used remote-sensing data from the SSMI satellite to record the sea-ice changes. "We’re seeing more melting of multi-year ice in the summer," said Julienne Stroeve, a CU-Boulder scientist with NSIDC involved in the research. "We may soon reach a threshold beyond which the sea ice can no longer recover." NSIDC is part of CU-Boulder’s Cooperative Institute for Research in Environmental Sciences.

One possible explanation for the continuing loss of sea ice is that climate warming from human activities like the burning of fossil fuels is becoming more apparent, said Serreze. "Climate models are in general agreement that one of the strongest signals of greenhouse warming will be a loss of Arctic sea ice," he said. "Some indicate complete disappearance of the summer sea ice cover by 2070."

Serreze believes natural climate variability likely plays some part in the observed changes. "However, the most reasonable view is that the sea ice decline represents a combination of both natural variability and the greenhouse effect, with the latter becoming more evident in coming decades," he said.

One complicating factor is the atmospheric circulation pattern known as the Arctic Oscillation, which may be contributing to the loss of the much thicker "multi-year" ice that has accumulated over many years. "As winds and currents force this ice southward, more of it melts," said Stroeve. "And while new ice is still forming in the winters, it is thinner, and therefore melts faster in the summer than older ice."

In a study funded by the National Science Foundation conducted with assistance from CU-Boulder, former graduate student Shari Fox Gearheard looked at the effects of climate change on Inuit communities in the Arctic region. "The timing of the climate and environmental changes observed by Inuit in Nunavut vary depending on the phenomenon, but in many cases elders and other experienced Inuit point to the last decade as a period of considerable change," Gearheard said. Nunavut is a Canadian Territory established in 1999 that is roughly the size of Western Europe.

Gearheard said one of the most frequent observations in indigenous communities all across the circumpolar north is that the weather is more unpredictable than usual. "In the past, Inuit were able to predict the weather using traditional indicators such as clouds, winds and currents," she said. "These indicators are no longer working."

Inuit elders point out that the sea ice in some places is thinner, causing dangerous travel conditions, she said. The ice forms later and breaks up earlier in the year, and the spring melt season is much shorter than before. In addition, unexpected storms have left hunting parties stranded, and harder packed snow due to recent wind changes makes it more difficult to build igloos for shelter.

The results of Gearheard’s work are presented in an interactive multimedia CD titled "When the Weather is Uggianaqtuq: Inuit observations of environmental change." Uggianaqtuq is a North Baffin Inuktitut word meaning to behave unexpectedly or in an unfamiliar way.

Another CU-Boulder project involves the effects of climate change on North Slope communities in Alaska, including the effects of loss of ice cover on the potential for increased damage, erosion and flooding from severe storms. CU-Boulder researchers Jim Maslanik of NSIDC said the retreat of the protective ice edge further offshore later into autumn has increased the potential for flooding and erosion for coastal communities such as Barrow. "Another aspect of the changing ice conditions is that, in addition to the ice edge retreating far offshore, the rate of retreat of the ice edge has been very rapid," said Maslanik. "In recent years, this has resulted in unexpected impacts, such as unusually large numbers of polar bears being stranded on shore near Barrow."

Mark Serreze | EurekAlert!
Further information:
http://www.colorado.edu
http://nsidc.org

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>