Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The science behind why leaves change colour in the Autumn

05.10.2004


Autumn is marked out by spectacular changes in leaf colour as the greens of summer change into the yellows and reds of autumn. In parts of North American whole tourist industries are based on this change, but why do leaves turn these bright colours before falling off the trees?

New work by Dr Dave Wilkinson (an ecologist in the School of Biological and Earth Sciences at Liverpool John Moores University) and his colleague Martin Schaefer (University of Freiburg, Germany), published in Trends in Ecology and Evolution, has added new twists to this autumnal story.

Most biology textbooks, if they mention autumn colour at all, are likely to say that it is the accidental by-product of the death of the leaves. For over one hundred years some biologists have wondered if there may be more to it than accident, but until recently the ‘accidental’ explanation has gone relatively unchallenged.



The autumn leaf story was reinvigorated by the late WD Hamilton (one of the greatest evolutionary theorists of the twentieth century) and two of his former students. They suggested that autumn colour was actually a signal of tree health designed to tell insect pests that they would be better off going elsewhere to attack a less healthy tree. Their idea was that only a healthy tree would have really bright autumn colours. Over the last five years several scientists (including Dr Wilkinson) have published research articles discussing the merits of this new idea.

In their new paper Drs Wilkinson and Schaefer review many recent studies on the chemistry of autumn leaves which strongly suggest that Hamilton’s imaginative idea is wrong.

There is now good evidence to suggest that these colours have evolved to help plants remove important chemicals from their leaves, for reuse next year. The autumn pigments do this by helping the plant continue to use the sun’s energy during the period at the end of the leaf’s life, so providing the energy needed to extract chemical nutrients before leaf fall.

Dr Wilkinson explained: “Contrary to what many people assume, photosynthesis does not stop once leaves change from green to red, and in the autumn, plants can be subjected to a potentially destructive combination of low temperatures and high light levels. The red and yellow pigments act like sunscreen, protecting the plants from the effects of chemicals produced by light acting on the contents of the dying leaf and may actually help plants photosynthesise better at lower temperatures.” Although Dr Wilkinson thinks Hamilton’s idea is wrong he points out that that doesn’t make it a failure.

He continued: “One of the important roles of new theories in science is to force people to think in new ways and to draw attention to overlooked phenomena in need of explanation. Like many biologists, before Hamilton’s theory it had never occurred to me to think hard about autumn leaf colour. The idea that these brief annual shows of colour may have good biochemical explanations, rather than being just an accident, makes them even more extraordinary to look at”.

Shonagh Wilkie | alfa
Further information:
http://www.livjm.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>