Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The science behind why leaves change colour in the Autumn

05.10.2004


Autumn is marked out by spectacular changes in leaf colour as the greens of summer change into the yellows and reds of autumn. In parts of North American whole tourist industries are based on this change, but why do leaves turn these bright colours before falling off the trees?

New work by Dr Dave Wilkinson (an ecologist in the School of Biological and Earth Sciences at Liverpool John Moores University) and his colleague Martin Schaefer (University of Freiburg, Germany), published in Trends in Ecology and Evolution, has added new twists to this autumnal story.

Most biology textbooks, if they mention autumn colour at all, are likely to say that it is the accidental by-product of the death of the leaves. For over one hundred years some biologists have wondered if there may be more to it than accident, but until recently the ‘accidental’ explanation has gone relatively unchallenged.



The autumn leaf story was reinvigorated by the late WD Hamilton (one of the greatest evolutionary theorists of the twentieth century) and two of his former students. They suggested that autumn colour was actually a signal of tree health designed to tell insect pests that they would be better off going elsewhere to attack a less healthy tree. Their idea was that only a healthy tree would have really bright autumn colours. Over the last five years several scientists (including Dr Wilkinson) have published research articles discussing the merits of this new idea.

In their new paper Drs Wilkinson and Schaefer review many recent studies on the chemistry of autumn leaves which strongly suggest that Hamilton’s imaginative idea is wrong.

There is now good evidence to suggest that these colours have evolved to help plants remove important chemicals from their leaves, for reuse next year. The autumn pigments do this by helping the plant continue to use the sun’s energy during the period at the end of the leaf’s life, so providing the energy needed to extract chemical nutrients before leaf fall.

Dr Wilkinson explained: “Contrary to what many people assume, photosynthesis does not stop once leaves change from green to red, and in the autumn, plants can be subjected to a potentially destructive combination of low temperatures and high light levels. The red and yellow pigments act like sunscreen, protecting the plants from the effects of chemicals produced by light acting on the contents of the dying leaf and may actually help plants photosynthesise better at lower temperatures.” Although Dr Wilkinson thinks Hamilton’s idea is wrong he points out that that doesn’t make it a failure.

He continued: “One of the important roles of new theories in science is to force people to think in new ways and to draw attention to overlooked phenomena in need of explanation. Like many biologists, before Hamilton’s theory it had never occurred to me to think hard about autumn leaf colour. The idea that these brief annual shows of colour may have good biochemical explanations, rather than being just an accident, makes them even more extraordinary to look at”.

Shonagh Wilkie | alfa
Further information:
http://www.livjm.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>