Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The science behind why leaves change colour in the Autumn

05.10.2004


Autumn is marked out by spectacular changes in leaf colour as the greens of summer change into the yellows and reds of autumn. In parts of North American whole tourist industries are based on this change, but why do leaves turn these bright colours before falling off the trees?

New work by Dr Dave Wilkinson (an ecologist in the School of Biological and Earth Sciences at Liverpool John Moores University) and his colleague Martin Schaefer (University of Freiburg, Germany), published in Trends in Ecology and Evolution, has added new twists to this autumnal story.

Most biology textbooks, if they mention autumn colour at all, are likely to say that it is the accidental by-product of the death of the leaves. For over one hundred years some biologists have wondered if there may be more to it than accident, but until recently the ‘accidental’ explanation has gone relatively unchallenged.



The autumn leaf story was reinvigorated by the late WD Hamilton (one of the greatest evolutionary theorists of the twentieth century) and two of his former students. They suggested that autumn colour was actually a signal of tree health designed to tell insect pests that they would be better off going elsewhere to attack a less healthy tree. Their idea was that only a healthy tree would have really bright autumn colours. Over the last five years several scientists (including Dr Wilkinson) have published research articles discussing the merits of this new idea.

In their new paper Drs Wilkinson and Schaefer review many recent studies on the chemistry of autumn leaves which strongly suggest that Hamilton’s imaginative idea is wrong.

There is now good evidence to suggest that these colours have evolved to help plants remove important chemicals from their leaves, for reuse next year. The autumn pigments do this by helping the plant continue to use the sun’s energy during the period at the end of the leaf’s life, so providing the energy needed to extract chemical nutrients before leaf fall.

Dr Wilkinson explained: “Contrary to what many people assume, photosynthesis does not stop once leaves change from green to red, and in the autumn, plants can be subjected to a potentially destructive combination of low temperatures and high light levels. The red and yellow pigments act like sunscreen, protecting the plants from the effects of chemicals produced by light acting on the contents of the dying leaf and may actually help plants photosynthesise better at lower temperatures.” Although Dr Wilkinson thinks Hamilton’s idea is wrong he points out that that doesn’t make it a failure.

He continued: “One of the important roles of new theories in science is to force people to think in new ways and to draw attention to overlooked phenomena in need of explanation. Like many biologists, before Hamilton’s theory it had never occurred to me to think hard about autumn leaf colour. The idea that these brief annual shows of colour may have good biochemical explanations, rather than being just an accident, makes them even more extraordinary to look at”.

Shonagh Wilkie | alfa
Further information:
http://www.livjm.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>