Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alaska scientists find Arctic tundra yields surprising carbon loss

27.09.2004


Carbon loss from soils exceeds storage by plants

Institute of Arctic Biology (IAB) ecologists Donie Bret-Harte and Terry Chapin and colleagues working in northern Alaska discovered that tundra plants and soils respond in surprisingly opposite ways to conditions that simulate long-term climate warming.
Their findings are published in the September 23, 2004 edition of the leading science journal Nature and are featured in the journal’s News and Views section.


Bret-Harte, Chapin, lead author Michelle Mack of the University of Florida, Gainesville, and colleagues set out to investigate whether the commonly held assumption that a warming climate will lead to bigger plants that can store more carbon and thereby reduce atmospheric carbon dioxide was indeed a silver lining in the global warming cloud that some people had hoped for.

Apparently not.

"The broadest implication of this research is that climate warming could lead to a much greater release of carbon dioxide to the atmosphere and a greater positive feedback to further warming than we originally thought," Bret-Harte said.

In the experiment, conducted at IAB’s Toolik Field Station, researchers measured the amount of carbon and nitrogen in plants and soils from plots of tundra that have been continually fertilized since 1980 – a condition thought to simulate the increased nutrient availability expected as a result of a warmer climate. The plots are part of a 20-plus-year project by Terry Chapin of IAB, and Gus Shaver of The Ecosystems Center at the Marine Biological Laboratory in Massachusetts. "One of the greatest values of IAB’s Toolik Field Station is that it provides opportunities for long-term uninterrupted research in a pristine environment. We could never have gotten the results we did without such a long-term experiment," said Bret-Harte.

"The connection between fertilization and warming is that warmer temperatures should stimulate decomposition of dead plant material, releasing carbon to the atmosphere and nitrogen to plants. Nitrogen limits plant growth in most terrestrial ecosystems, said Bret-Harte" "What’s really surprising about this result is that we didn’t expect that this big loss of carbon from the soils would be stimulated by nitrogen alone. Everyone had assumed increased decomposition would be caused by increased temperatures, and the main effect of increased nitrogen would be to stimulate plant growth and store more carbon. We expected that fertilization by itself would lead to increased carbon storage." "Instead, nitrogen seems to stimulate decomposition and promote carbon dioxide release to the atmosphere from the soils," Bret-Harte said.

The researchers found that although the aboveground portion of tundra plants doubled their productivity under fertilization and, as expected, stored more carbon, the losses of carbon and nitrogen from the deep-soil layers was substantial and more than offset the increased carbon stored in the aboveground plants and plant litter.

Because more than one-third of the world’s soil carbon is stored in northern ecosystems – boreal forest and Arctic tundra – and is equivalent to two-thirds of the carbon found in the atmosphere, the loss of deep-soil carbon could mean an even greater increase in atmospheric carbon dioxide concentrations than is caused by fossil fuel burning. "The paradigm is that decomposers (microbes) are always limited by carbon availability and almost never limited by nitrogen availability, but this project suggests that we don’t understand decomposition as well as we thought we did. Better understanding of decomposition is necessary to be able to predict what will happen with climate warming in northern ecosystems."

Marie Gilbert | EurekAlert!
Further information:
http://www.uaf.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>