Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alaska scientists find Arctic tundra yields surprising carbon loss

27.09.2004


Carbon loss from soils exceeds storage by plants

Institute of Arctic Biology (IAB) ecologists Donie Bret-Harte and Terry Chapin and colleagues working in northern Alaska discovered that tundra plants and soils respond in surprisingly opposite ways to conditions that simulate long-term climate warming.
Their findings are published in the September 23, 2004 edition of the leading science journal Nature and are featured in the journal’s News and Views section.


Bret-Harte, Chapin, lead author Michelle Mack of the University of Florida, Gainesville, and colleagues set out to investigate whether the commonly held assumption that a warming climate will lead to bigger plants that can store more carbon and thereby reduce atmospheric carbon dioxide was indeed a silver lining in the global warming cloud that some people had hoped for.

Apparently not.

"The broadest implication of this research is that climate warming could lead to a much greater release of carbon dioxide to the atmosphere and a greater positive feedback to further warming than we originally thought," Bret-Harte said.

In the experiment, conducted at IAB’s Toolik Field Station, researchers measured the amount of carbon and nitrogen in plants and soils from plots of tundra that have been continually fertilized since 1980 – a condition thought to simulate the increased nutrient availability expected as a result of a warmer climate. The plots are part of a 20-plus-year project by Terry Chapin of IAB, and Gus Shaver of The Ecosystems Center at the Marine Biological Laboratory in Massachusetts. "One of the greatest values of IAB’s Toolik Field Station is that it provides opportunities for long-term uninterrupted research in a pristine environment. We could never have gotten the results we did without such a long-term experiment," said Bret-Harte.

"The connection between fertilization and warming is that warmer temperatures should stimulate decomposition of dead plant material, releasing carbon to the atmosphere and nitrogen to plants. Nitrogen limits plant growth in most terrestrial ecosystems, said Bret-Harte" "What’s really surprising about this result is that we didn’t expect that this big loss of carbon from the soils would be stimulated by nitrogen alone. Everyone had assumed increased decomposition would be caused by increased temperatures, and the main effect of increased nitrogen would be to stimulate plant growth and store more carbon. We expected that fertilization by itself would lead to increased carbon storage." "Instead, nitrogen seems to stimulate decomposition and promote carbon dioxide release to the atmosphere from the soils," Bret-Harte said.

The researchers found that although the aboveground portion of tundra plants doubled their productivity under fertilization and, as expected, stored more carbon, the losses of carbon and nitrogen from the deep-soil layers was substantial and more than offset the increased carbon stored in the aboveground plants and plant litter.

Because more than one-third of the world’s soil carbon is stored in northern ecosystems – boreal forest and Arctic tundra – and is equivalent to two-thirds of the carbon found in the atmosphere, the loss of deep-soil carbon could mean an even greater increase in atmospheric carbon dioxide concentrations than is caused by fossil fuel burning. "The paradigm is that decomposers (microbes) are always limited by carbon availability and almost never limited by nitrogen availability, but this project suggests that we don’t understand decomposition as well as we thought we did. Better understanding of decomposition is necessary to be able to predict what will happen with climate warming in northern ecosystems."

Marie Gilbert | EurekAlert!
Further information:
http://www.uaf.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>