Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revised Version - Neon Design Consortium And Project Office To Coordinate Design Of Ecological Observatories

22.09.2004


NEON’s synthesis, computation and visualization infrastructure will create a virtual laboratory that will allow scientists to develop a predictive understanding of the relationship between environmental change and biological processes. Credit: NSF


The scientific community’s work to create the National Ecological Observatory Network (NEON) enters a new phase today. Bruce Hayden, an ecologist at the University of Virginia and principal investigator for the project, along with William Michener, associate director of NSF’s Long Term Ecological Research (LTER) Network, will direct the NEON project office at the American Institute of Biological Sciences (AIBS) headquarters in Washington, D.C.

With a two-year, $6 million cooperative agreement from NSF, AIBS will set up a NEON Design Consortium and Project Office to develop a blueprint for the network and a plan for its implementation. NEON, envisioned as field and lab instrumentation deployed across the United States and integrated via cutting-edge cyberinfrastructure into a continent-wide research platform, will be the first national ecological observation system designed to answer scientific questions at regional and continental scales to enable ecological forecasting.

"Once built, NEON will transform ecological research." said Mary Clutter, the assistant director of the directorate for biological sciences. "It will create new collaborative environments—bringing together ecologists, engineers, social, physical, computer, and earth scientists—to investigate ecological phenomena that span large geographical areas and long periods of time." Clutter believes NEON can also provide unique educational opportunities for students and the public alike. "This award is a major step toward realizing NEON," she said.



According to Liz Blood, NSF program director for NEON, "The most pressing challenges facing the nation’s biosphere — the impact of climate change on forests and agriculture, the emergence and spread of infectious diseases, and the causes and consequences of invasive species—result from complex interactions between human, natural and physical systems. These systems are large spatially, change over time, and cross all levels of biological organization," she said. "To better understand them and forecast biological change, ecologists need a new tool to study the structure and dynamics of ecosystems in the United States."

Just as the nation’s network of meteorological stations allows scientists to predict changes in the weather, NEON will make it possible for scientists to predict changes in the nation’s ecosystems and their consequences, said Hayden. The project, managed at AIBS by science office director, Jeffrey Goldman, is designed to involve large numbers of scientists and educators in the development of the NEON network blueprint and implementation plan.

Liz Blood | NSF News
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>