Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revised Version - Neon Design Consortium And Project Office To Coordinate Design Of Ecological Observatories

22.09.2004


NEON’s synthesis, computation and visualization infrastructure will create a virtual laboratory that will allow scientists to develop a predictive understanding of the relationship between environmental change and biological processes. Credit: NSF


The scientific community’s work to create the National Ecological Observatory Network (NEON) enters a new phase today. Bruce Hayden, an ecologist at the University of Virginia and principal investigator for the project, along with William Michener, associate director of NSF’s Long Term Ecological Research (LTER) Network, will direct the NEON project office at the American Institute of Biological Sciences (AIBS) headquarters in Washington, D.C.

With a two-year, $6 million cooperative agreement from NSF, AIBS will set up a NEON Design Consortium and Project Office to develop a blueprint for the network and a plan for its implementation. NEON, envisioned as field and lab instrumentation deployed across the United States and integrated via cutting-edge cyberinfrastructure into a continent-wide research platform, will be the first national ecological observation system designed to answer scientific questions at regional and continental scales to enable ecological forecasting.

"Once built, NEON will transform ecological research." said Mary Clutter, the assistant director of the directorate for biological sciences. "It will create new collaborative environments—bringing together ecologists, engineers, social, physical, computer, and earth scientists—to investigate ecological phenomena that span large geographical areas and long periods of time." Clutter believes NEON can also provide unique educational opportunities for students and the public alike. "This award is a major step toward realizing NEON," she said.



According to Liz Blood, NSF program director for NEON, "The most pressing challenges facing the nation’s biosphere — the impact of climate change on forests and agriculture, the emergence and spread of infectious diseases, and the causes and consequences of invasive species—result from complex interactions between human, natural and physical systems. These systems are large spatially, change over time, and cross all levels of biological organization," she said. "To better understand them and forecast biological change, ecologists need a new tool to study the structure and dynamics of ecosystems in the United States."

Just as the nation’s network of meteorological stations allows scientists to predict changes in the weather, NEON will make it possible for scientists to predict changes in the nation’s ecosystems and their consequences, said Hayden. The project, managed at AIBS by science office director, Jeffrey Goldman, is designed to involve large numbers of scientists and educators in the development of the NEON network blueprint and implementation plan.

Liz Blood | NSF News
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>