Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Hydrogen Agreement Marks 25 Years

14.09.2004


The simplest molecule presents the best opportunity for energy. With global energy demands projected to rise 66% by 2030, the world desperately needs alternatives to fossil fuels. Hydrogen power, a recent media phenomenon, presents an enticing alternative – one whose development reaches much further back than most imagine. -When people hear ‘hydrogen power,’ they don’t realize that we’ve been working on it for 25 years, says Trygve Riis, the Norwegian chairman of the International Energy Agency’s Hydrogen Implementation Agreement (IEA-HIA). -The world has already made significant progress in hydrogen production, storage, distribution, and safety.

Riis spoke at a press briefing in Washington, DC, where he unveiled the IEA-HIA’s 25th anniversary report, In Pursuit of the Future: 25 Years of IEA Research Towards the Realisation of Hydrogen Energy Systems. "Hydrogen is one of the few options we have for meeting energy demands without increasing global carbon dioxide emissions,” said Giorgio Simbolotti, PhD, an IEA program officer who also spoke at the briefing.

In 2004, governments worldwide will spend about $1 billion (US) on hydrogen research and development; corporations will spend another $5 billion (US) – both figures all-time highs. Much of this investment is spurred by the HIA’s drive to develop ’baseline’ hydrogen technologies. "We have an ambitious vision, but the challenges are significant, said Riis. The first challenge is production. Today the world produces roughly 40 million tonnes of hydrogen per year, most used for making ammonia and, ironically, for refining fossil fuels. If used for energy, the world’s annual hydrogen output would satisfy just 0.1% of the world’s energy needs," said Simbolotti.



Hence the need for large-scale hydrogen production. Strategies range from the old - coal gasification, developed in the 19th century – to the new – huge tanks of algae that gobble carbon dioxide and spew out hydrogen.

In the near-term, fossil fuels present the most viable feedstock. The technology to turn carbon-based fuels into hydrogen is proven and inexpensive. While cleaner than burning, these hydrogen-producing techniques, including the gasification of coal and the reformation of natural gas, still produce greenhouse gases. A cleaner long-term solution is needed.

Thermochemical production is one possibility. The process, which splits water molecules into hydrogen and oxygen, became the IEA-HIA’s first project, or ’task’ in 1977. Since then, the consortium has fostered dozens of projects, many focused on the sulphur/iodine process. A 3-step chemical reaction proposed in the late 1970s, sulphur/iodine production became reality when IEA-HIA members achieved a fully operational bench-scale system in the early 1990s. The IEA-HIA also funds several electroysis projects, which split water by passing electricity through it. One electroysis ’stack’ ran continuously for 40 days, a milestone.

While these two methods present ready opportunities for small-scale deployment, a truly clean, renewable source awaits in the future: solar-to-hydrogen. Its potential is so high that 40 groups from academia and industry have been hammering out solar production strategies since IEA-HIA’s inception in 1977. “Many believe solar-to-hydrogen is the ultimate energy solution,” said Riis. In some designs, sunlight powers conventional photovoltaic cells, which in turn drive electroysis. In others, green algae and cyanobacteria gulp carbon dioxide and spew out hydrogen. After production, storage becomes the main concern. Current state-of-the-art demonstration busses and cars store hydrogen like gasoline, in tanks.

But in 1995, research teams began a push for a much more advanced storage system: metals. As the smallest molecule, hydrogen packs into tight spaces inside the latticework atomic structure of metal. Just like a soggy sponge soaking up water, a block of solid state hydride absorbs hydrogen. Heating the metal releases hydrogen gas. In 2000, IEA-HIA researchers achieved their goal of making a hydride that contains 5% hydrogen (by weight). Researchers are now striving for metals with 20% or higher hydrogen-to-weight ratios.
A plentiful supply of metal ore makes hydrides attractive, as does their low operating temperature. And unlike traditional batteries, hydrides do not lose efficiency over time. Safety is also high: in the 1970s, researchers demonstrated this by firing bullets into hydride blocks.

Other solid-state approaches use advanced carbon materials, such as graphite nanofibers. But all solid-state solutions, while hotly pursued, are expensive. “The key to widespread use will be pushing the price down,” said Riis.

Ultimately, though, hydrogen power will succeed only when it can be distributed to users and converted back into energy. Case studies exploring various distribution schemes include fuel cells that produce electricity from an onboard hydride block. Others employ solar-powered or liquid hydrogen fuel stations. One test system slashed vehicle refuelling times to three minutes while reducing boil-off loses to less than 10%. Other demonstration projects have put hydrogen-fueled cars, trucks, and busses on the road in several countries.

Expanding access to the masses is a long-term prospect, said Riis. It will require continued international cooperation for another quarter-century and beyond. He optimistically pointed to the imminent expansion of the IEA-HIA and closer cooperation with Japan, which invests more in hydrogen research than any other country. The US Department of Transportation also plays a key role in hydrogen’s future, he said, adding that research led by Norwegian conglomerate Norsk is a prime example of the expanding role for corporations in the IEA-HIA.

Trygve Riis | alfa
Further information:
http://www.rcn.no
http://www.forskningsradet.no/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>