Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers model effects of hurricane force winds on structures

10.09.2004


As the rains from the downgraded Hurricane Frances move northward while the eastern U.S. continues to watch Hurricane Ivan’s approach, the destruction from the heavy winds and rains is mounting into the billions of dollars.



In Florida alone, initial estimates for losses caused by Frances were between $2 and 4 billion following the projected $7.4 billion in insured damages from Hurricane Charley, according to Reuters News Service.

In most cases, low-rise buildings, including residential, institutional, and commercial structures are the most vulnerable and carry the brunt of the damage and losses from extreme wind.


"Engineers have the ability to theoretically understand and simulate how a storm will impact a structure," said Muhammad Hajj, professor of engineering science and mechanics at Virginia Tech. "This ability, however, needs to be complemented with computational power such as the supercomputing system developed at Virginia Tech to obtain reliable values for wind loads," he said.

Hajj and his Virginia Tech colleagues, Professors Henry Tieleman and Saab Ragab in Engineering Science and Mechanics, and Finley Charney in Civil and Environmental Engineering, are a part of the Hurricane Loss Reduction Consortium: Wind and Structural Engineering Initiative. The consortium members are Virginia Tech, Clemson University, University of Florida and the Johns Hopkins University. The National Institute of Standards and Technology (NIST) funded this consortium.

Although the American Society of Civil Engineers (ASCE) maintains minimum building codes, and builders follow these codes "as a first basis," Hajj said, "there is still a wide fluctuation in the standards used." Hajj also notes that complex terrains of mountainous areas (as in the Carolinas, Virginia and some of the Caribbean Islands) create excessive turbulence that may cause increased wind loads."

In addition to differences in terrain, existing codes do not address how other factors contribute to damage to low-rise buildings. "As wind impacts a structure, different parameters such as duration of extreme loads, connector types, missing connectors, shoddy workmanship, and below-standard materials will determine the extent of damage," Hajj said. He and his colleagues are working on modeling these effects as well.

The researchers of the Hurricane Loss Reduction Consortium have instrumented homes along the Florida coast that were subjected to the winds of various storms such as Tropical Storm Isodore and Hurricanes Bonnie, Dennis and Floyd. They have analyzed these results and made preliminary comparisons to wind tunnel results. "The wind tunnel simulations are indeed capable of reproducing average values of wind loads, but appreciable differences may arise when considering local values," the team members from Virginia Tech explained in a progress report to NIST.

As the consortium continues its work, its long-term objective is to provide a full computational platform to calculate wind loads and structural capacities of low-rise buildings and to incorporate the findings into regional and national codes. Ultimately, the hope is to appreciably reduce damage and increase safety.

At Virginia Tech, the efforts are also a part of the recently established Center of Extreme Load Effects on Structures under Virginia Tech’s Institute for Critical Technology and Applied Science initiative.

Lynn Nystrom | EurekAlert!
Further information:
http://www.vt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>