Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers model effects of hurricane force winds on structures

10.09.2004


As the rains from the downgraded Hurricane Frances move northward while the eastern U.S. continues to watch Hurricane Ivan’s approach, the destruction from the heavy winds and rains is mounting into the billions of dollars.



In Florida alone, initial estimates for losses caused by Frances were between $2 and 4 billion following the projected $7.4 billion in insured damages from Hurricane Charley, according to Reuters News Service.

In most cases, low-rise buildings, including residential, institutional, and commercial structures are the most vulnerable and carry the brunt of the damage and losses from extreme wind.


"Engineers have the ability to theoretically understand and simulate how a storm will impact a structure," said Muhammad Hajj, professor of engineering science and mechanics at Virginia Tech. "This ability, however, needs to be complemented with computational power such as the supercomputing system developed at Virginia Tech to obtain reliable values for wind loads," he said.

Hajj and his Virginia Tech colleagues, Professors Henry Tieleman and Saab Ragab in Engineering Science and Mechanics, and Finley Charney in Civil and Environmental Engineering, are a part of the Hurricane Loss Reduction Consortium: Wind and Structural Engineering Initiative. The consortium members are Virginia Tech, Clemson University, University of Florida and the Johns Hopkins University. The National Institute of Standards and Technology (NIST) funded this consortium.

Although the American Society of Civil Engineers (ASCE) maintains minimum building codes, and builders follow these codes "as a first basis," Hajj said, "there is still a wide fluctuation in the standards used." Hajj also notes that complex terrains of mountainous areas (as in the Carolinas, Virginia and some of the Caribbean Islands) create excessive turbulence that may cause increased wind loads."

In addition to differences in terrain, existing codes do not address how other factors contribute to damage to low-rise buildings. "As wind impacts a structure, different parameters such as duration of extreme loads, connector types, missing connectors, shoddy workmanship, and below-standard materials will determine the extent of damage," Hajj said. He and his colleagues are working on modeling these effects as well.

The researchers of the Hurricane Loss Reduction Consortium have instrumented homes along the Florida coast that were subjected to the winds of various storms such as Tropical Storm Isodore and Hurricanes Bonnie, Dennis and Floyd. They have analyzed these results and made preliminary comparisons to wind tunnel results. "The wind tunnel simulations are indeed capable of reproducing average values of wind loads, but appreciable differences may arise when considering local values," the team members from Virginia Tech explained in a progress report to NIST.

As the consortium continues its work, its long-term objective is to provide a full computational platform to calculate wind loads and structural capacities of low-rise buildings and to incorporate the findings into regional and national codes. Ultimately, the hope is to appreciably reduce damage and increase safety.

At Virginia Tech, the efforts are also a part of the recently established Center of Extreme Load Effects on Structures under Virginia Tech’s Institute for Critical Technology and Applied Science initiative.

Lynn Nystrom | EurekAlert!
Further information:
http://www.vt.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>