Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Envisat Symposium Report Day 3: Satellites supporting Kyoto - our future is in our forests


The greatest single strength of Earth Observation is its wideness of view: the 10 instruments aboard ESA’s Envisat spacecraft allow scientists simultaneous looks across large expanses of our planet.

Under discussion during Wednesday’s Envisat Symposium is how researchers use this ability to peer further through time, addressing the leading scientific question of our time – the likely extent of climate change. Human activities have been changing the chemical composition of the atmosphere, leading to an increased retaining of heat popularly termed the ‘Greenhouse Effect’.

Successfully predicting the long-term effects of this change requires enhanced characterisation and understanding of the complex processes making up the Earth System. The multi-sensor Envisat is well matched for such an aim, the Symposium heard, and has demonstrated its ability to directly measure greenhouse gases.

Teams from the University of Heidelberg, Bremen and the National Institute for Space Research (SRON) in the Netherlands showed how they are using data from Envisat’s Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) instrument to track trace gases in the atmosphere and produce daily global maps of atmospheric methane. Carbon dioxide is the best known greenhouse gas, but methane is able to trap more than 21 times more heat per molecule.

“Accurately characterising methane sources and distribution is very important to increase the accuracy of climate models,” said Michael Buchwitz of the University of Bremen. “Methane comes from natural sources such as wetlands, but human activities produce a lot as well. For example, the image shows methane given off from rice fields in the Ganges Valley in India, and also from extensive cattle ranching in South America.”

Methane is eventually broken down by chemical reactions in the atmosphere, but carbon dioxide is a longer-lived greenhouse gas. Surface vegetation stores a vast amount of carbon, only released into the atmosphere when land is cleared or burnt.

So mapping land cover and land cover change is a crucial part of climate studies, and also for implementing the 1997 Kyoto Protocol, which seeks to stabilise greenhouse gas emissions at 1990 levels. Participating nations are given the option of planting new forests, forming ‘carbon sinks’ that can be set against their overall carbon emissions.

Paul Curran from the University of Southampton explained how he has used another Envisat instrument, the Medium Resolution Imaging Spectrometer (MERIS), to infer global levels of land-based chlorophyll – the compound that plants use for photosynthesis – enabling a calculation of the amount of vegetable biomass and the development of a new vegetation index, called the MERIS terrestrial chlorophyll index (TCI).

The results were tested for accuracy against the actual chlorophyll content of sites in the UK’s New Forest, and also compared to forest sites in southern Vietnam that were contaminated with Agent Orange defoliant during the Vietnam War.

Agent Orange leaves lasting effects on plant life, so even fully-regrown forest still has lowered levels of chlorophyll. Records of the amounts of Agent Orange sprayed on the forest between 1965 and 1971 were compared to current MTCI values, and a relationship was indeed found.

Another team from the German Aerospace Centre (DLR) recounted how they have used MERIS data to develop a vegetation index for a German brewery using it to predict barley yields. The product is compatible with a former index acquired via the US Advanced Very High Resolution Radiometer (AVHRR) instrument, but has a higher resolution.

Other speakers addressed the subject of forest mapping using MERIS, but also Envisat’s Advanced Synthetic Aperture Radar (ASAR) along with radar data acquired from Envisat’s predecessor missions ERS-1 and 2.

Shaun Quegan of Sheffield University discussed use of interferometry coherence data from the ERS-tandem mission to estimate tree age in the UK’s Kielder forest – an important variable in terms of estimating carbon flux, he revealed, because young forests in temperate regions actually emit more carbon than they take in for their first decade of life – it takes another decade to achieve a carbon ’break even’.

Growing forests are carbon sinks, but forests that are logged or burnt down become carbon sources. A team from Italy’s Tor Vergata University dealt with using radar data to detect fire damage – Envisat’s cross polarization gives it an enhanced ability to detect burn scars.

Another group from the German-based Remote Sensing Technologies has been assessing ASAR’s Wide Swath Mode to see burn scars across the vast forests of Russia – two thirds of the world’s boreal forests are sited within its borders, but they are often affected by fires.

In one vast fire east of Lake Baikal in 2003, some 202 000 square kilometres were burnt. MERIS and other optical sensors were used to home in on affected areas, then ASAR was used to peer through clouds and smoke mode, showing a successful ability to detect fire scars of up to two years old, particularly when snow melt or rainfall enhanced the signal contrast, making May to July the best time for burn scar detection.

These scientific studies show the potential of Earth Observation to support the forest reporting mandatory for advanced nation signatories to Kyoto; France has already used ASAR data to map forest coverage across the whole of French Guiana.

José Romero of the Swiss Federal Office of the Environment explained his country’s participation in a pilot ESA Data User Programme project called Kyoto Inventory, using satellite data in support of forest Kyoto reporting. Also participating are partners in Finland, Italy, Norway and the Netherlands. “We’re interested in investigating this technology to fill in the gaps in current practices,” said Romero. “We want to learn how space-borne products can be applied to carbon reporting.”

As the Symposium heard, ESA is also carrying out a scientific project called GLOBCARBON, combining the results from all available space-based instruments to monitor global carbon flux over a seven-year period from 1997.

In addition, a forest monitoring service is included in ESA’s Global Monitoring for Environment and Security (GMES) Services Element, addressing Kyoto reporting needs as well as serving as a tool for woodland management and monitoring environmental indicators.

Mariangela D’Acunto | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>