Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do Rocks Hold The Key To Nuclear Waste Storage?

10.09.2004


Technology to monitor how the rock barrier around radio active waste reacts has been developed by an Anglo French consortium with the help of 466,286 euros from the EU’s Framework Programme towards the projects total cost of 765,619 euros.

As the sources of traditional fossil fuels like coal, oil and gas continue to decrease there is a growing demand for more sustainable forms of energy. The option to turn to nuclear power for the production of electricity has long been debated but disposal of the waste material is a major cause for concern. Experts believe one of the most viable solutions for the safe management of nuclear radioactive waste is deep geological disposal, but this needs extensive testing and validation before it can be considered as the long-term solution.
“The OMNIBUS project developed ultrasonic technology with a primary aim to monitor the rock barrier at potential underground radioactive waste storage sites (including argillaceous rock masses)”, says Professor Paul Young, the project co-ordinator at the University of Liverpool’s Department of Earth Sciences. “The technology (hardware and software) has been successfully tested insitu to provide real time monitoring of rock masses to provide information on changes that are occurring. The software provides methods for interpreting these changes in terms of crack density, crack size and orientation, as well as fluid content. This information on changing rock properties is very important in terms of short and long term safety in these types of facilities.”


Three main technologies have been produced that will have significant application in areas, apart from radioactive waste management, where continuous and non-destructive testing of brittle materials such as concrete and metals are undertaken. For instance, in mining and petroleum sectors as well as in seismological studies and civil engineering for structures including dams, tunnels, and bridges. They are:

Ultrasonic Monitoring Hardware – A state-of-the-art system of custom designed and built components as well as off the shelf components. This includes the technology for installing ultrasonic sensors in boreholes in a rockmass as well as for high speed high resolution data collection.

Ultrasonic Monitoring Software – to allow ultrasonic data acquisition control, real time ultrasonic data processing and visualization, as well as ultrasonic data interpretation of rock properties from the display and analysis of model data.

Ultrasonic Modelling Software – that can be used to help understand the effect that rock properties have on ultrasonic transmission characteristic including phase and amplitude spectra.

“The nuclear energy programme of Framework Funding is aimed at intensifying and deepening the already well established co-operation at European level in the field of nuclear research”, says Paul Leeks, Project Director for FP6UK. “The exploitation of nuclear fission energy for energy production requires progress to be made in the problem of waste, and more particularly the industrial implementation of technical solutions for the management of long-lived waste.

“The current Framework Programme (FP6) runs until 2006 and organisations wanting free, easy to access, information on the 19bn euros of funding available to support internationally collaborative R&D should log on to http://fp6uk.ost.gov.uk or call central telephone support on 0870 600 6080.”

Dave Sanders | alfa
Further information:
http://fp6uk.ost.gov.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>