Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global climate change: a load of poo?

09.09.2004


Plankton poo could be the key to understanding how much carbon dioxide our oceans can store according to Tasmanian researcher Dr Karin Beaumont.



The greenhouse effect is arguably humanity’s greatest environmental threat. “We need to understand where and how carbon dioxide is stored in the oceans. Part of the answer lies in the poo of microscopic zooplankton: does it float or does it sink?” said Karin. “Heavy poo that sticks together and sinks to the ocean floor is good. It locks up carbon dioxide for thousands of years.”

“Other poo that breaks up and floats near the surface is not good. The carbon dioxide in this poo can be re-released to the atmosphere, adding to the Greenhouse Effect,” says Karin, who conducted her research as part of a PhD with the University of Tasmania and the Australian Antarctic Division.


Karin is one of 16 early-career scientists whose high quality work has been presented to the public and media as part of Fresh Science 2004 in Australia. British Council Australia supports the best of the 16 to go on a study tour to the UK.

Karin has discovered that the poo from the most abundant plankton floats. And she has co-authored an internet-guide to zooplankton poo.

Around 25% of carbon taken up by the oceans is currently stored in the deep-sea. “Knowing which plankton contribute to this carbon export will help us understand how changes in their abundance will influence the greenhouse effect. As algae grow in the oceans they take up carbon dioxide - a powerful greenhouse gas.” “Zooplankton are tiny marine animals that graze the algae and hopefully lock up this carbon dioxide in the deep ocean.”

“I found that while larger zooplankton poo transports carbon to the deep-sea, microzooplankton poo doesn’t. These microzooplankton represent around 10 times the biomass of larger zooplankton and process most of the atmospherically derived carbon. So, this finding is important for understanding how much carbon the oceans can take-up from the atmosphere.”

Karin is developing the first internet guide to zooplankton poo in collaboration with Assoc Prof Juanita Urban-Rich, University of Massachusetts, Boston, “The guide will allow researchers to identify whose poo reaches the deep-ocean and whose poo doesn’t. This will allow us to know which plankton are the key players in keeping atmospherically derived carbon in the oceans,” she said. This guide will be the first integrated resource of its kind in the world, with anticipated contributions by researchers from at least seven other countries.

Karin does not expect the guide to top the best-seller list! “It is a research tool for scientists that will help us build a better picture of the carbon cycle in the oceans. She hopes the guide will be published in a matter of months, subject to funding.

Niall Byrne | alfa
Further information:
http://www.scienceinpublic.com

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>