Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global climate change: a load of poo?

09.09.2004


Plankton poo could be the key to understanding how much carbon dioxide our oceans can store according to Tasmanian researcher Dr Karin Beaumont.



The greenhouse effect is arguably humanity’s greatest environmental threat. “We need to understand where and how carbon dioxide is stored in the oceans. Part of the answer lies in the poo of microscopic zooplankton: does it float or does it sink?” said Karin. “Heavy poo that sticks together and sinks to the ocean floor is good. It locks up carbon dioxide for thousands of years.”

“Other poo that breaks up and floats near the surface is not good. The carbon dioxide in this poo can be re-released to the atmosphere, adding to the Greenhouse Effect,” says Karin, who conducted her research as part of a PhD with the University of Tasmania and the Australian Antarctic Division.


Karin is one of 16 early-career scientists whose high quality work has been presented to the public and media as part of Fresh Science 2004 in Australia. British Council Australia supports the best of the 16 to go on a study tour to the UK.

Karin has discovered that the poo from the most abundant plankton floats. And she has co-authored an internet-guide to zooplankton poo.

Around 25% of carbon taken up by the oceans is currently stored in the deep-sea. “Knowing which plankton contribute to this carbon export will help us understand how changes in their abundance will influence the greenhouse effect. As algae grow in the oceans they take up carbon dioxide - a powerful greenhouse gas.” “Zooplankton are tiny marine animals that graze the algae and hopefully lock up this carbon dioxide in the deep ocean.”

“I found that while larger zooplankton poo transports carbon to the deep-sea, microzooplankton poo doesn’t. These microzooplankton represent around 10 times the biomass of larger zooplankton and process most of the atmospherically derived carbon. So, this finding is important for understanding how much carbon the oceans can take-up from the atmosphere.”

Karin is developing the first internet guide to zooplankton poo in collaboration with Assoc Prof Juanita Urban-Rich, University of Massachusetts, Boston, “The guide will allow researchers to identify whose poo reaches the deep-ocean and whose poo doesn’t. This will allow us to know which plankton are the key players in keeping atmospherically derived carbon in the oceans,” she said. This guide will be the first integrated resource of its kind in the world, with anticipated contributions by researchers from at least seven other countries.

Karin does not expect the guide to top the best-seller list! “It is a research tool for scientists that will help us build a better picture of the carbon cycle in the oceans. She hopes the guide will be published in a matter of months, subject to funding.

Niall Byrne | alfa
Further information:
http://www.scienceinpublic.com

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>