Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic Coring Expedition (ACEX) retrieves first Arctic core

26.08.2004


IODP team succeeds in recovering sub-seafloor sample



The first 40 million years of Arctic climate history have been recovered from beneath the Arctic seafloor this week. After four days of working in hazardous conditions, the Integrated Ocean Drilling Program’s (IODP) Arctic Coring Expedition (ACEX) retrieved 272 meters of core. Extreme sea ice then forced the ship to abandon its position.
Coring of the Arctic’s first scientific borehole--located roughly 145 miles (233 kilometres) from the North Pole--was interrupted when very thick, moving ice floes threatened the expedition’s safety. Even one of the world’s most powerful ice breakers, the Russian Sovetskiy Soyuz, employed to protect the coring ship from harsh Arctic elements, could not safeguard operations at the initial coring site.

As the expedition team searches for another favorable site from which to core, scientists on board the Vidar Viking have examined microfossils in the retrieved core. Initial analyses suggest that some of the material in the core’s sediments could be 40 million years old--originating in the Middle Eocene period. The expedition’s co-chief scientist, Professor Jan Backman of the University of Stockholm, exclaims, "This is very exciting. For the first time, we are beginning to get information about the history of ice in the central Arctic Ocean." He adds, "This core goes back to a time when there was no ice on the planet--it was too warm. It will tell us a great deal about the climate of the region. It will tell us when it changed from hot to cold, and hopefully, why." Prof. Backman explains that in prehistoric times, life in the Arctic Ocean was much different than today. In warmer conditions and free from ice, marine life thrived. The retrieved Arctic sediments will indicate the type and abundance of marine creatures that lived here back then. The cores were raised from sea depths of about 600 meters, coring depths formerly unmatched in Arctic waters.



The six-week Arctic Coring Expedition (ACEX) is an inaugural effort of the Integrated Ocean Drilling Program (IODP), a program of scientific discovery sponsored by 16 countries, funded by the U.S. National Science Foundation, the Japanese Ministry of Education, Culture, Sports, Science and Technology, and the European Consortium for Ocean Research Drilling. IODP expeditions explore Earth’s history and structure by collecting and studying sediments and rocks beneath the sea floor, using technologically advanced ocean-drilling techniques. The program, overseen by Integrated Ocean Drilling Program Management International (IODP-MI) with offices in Sapporo, Japan, and Washington, DC, coordinates all program planning, administration, and educational outreach. IODP-MI seeks to maximize the program’s scientific output, involve the broadest scientific population in its implementation, and stimulate community interest and involvement in all IODP discovery activities.

Eva Grönlund | EurekAlert!
Further information:
http://www.polar.se
http://www.iodp.org

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>