Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colloidal Adsorbent Removes Natural Organic Matter From Water Supply

24.08.2004


Microbial degradation products and other forms of natural organic matter can make water look, smell and taste bad. Natural organic matter also can foul the membranes used in water treatment plants, significantly reducing their efficiency.

Now, a polymer-based colloidal adsorbent developed at the University of Illinois at Urbana-Champaign offers an environmentally friendly and cost-effective way of removing troublesome natural organic matter from municipal water supplies.

"Natural organic matter can react with chemical disinfectants such as chlorine to produce chloroform and other carcinogens in our drinking water," said Mark Clark, a professor of civil and environmental engineering at Illinois and a researcher at the Center of Advanced Materials for Purification of Water With Systems on campus. "Ensuring a safe and clean water supply without forming dangerous byproducts is a major problem."



One solution, he said, is to remove more of the harmful bacteria by using advanced filtration processes that utilize synthetic membranes made from polymer. Less chlorine would then be needed, which would reduce the formation of potentially dangerous chlorinated compounds. The problematic membrane fouling from natural organic matter could be avoided by adding the new colloidal adsorbent.

Several years ago, Clark and Robert Riley, a polymer chemist with Separation Systems Technology in California, invented the technology for producing a colloidal adsorbent from polysulfone - the same organic polymer used for water purification membranes. A patent was issued late last year.

To create their cleaning colloids, Clark and his students inject a solution of polysulfone into water under controlled mixing conditions. The polysulfone precipitates into colloidal particles about 50-60 nanometers in diameter, which then aggregate into clusters about 12-20 microns in diameter.

The pore size of the clusters is perfect for trapping natural organic matter, Clark said. The very high surface area of the particles also creates a large adsorption capacity.

"The particles work better than activated carbon for collecting natural organic foulants," Clark said. "The colloids can be easily regenerated chemically, and they significantly reduce membrane fouling." Not all natural organic matter fouls membranes, however. "A large percentage passes through the membrane with no problem," Clark said. "Only about 5 to 10 percent of the material actually causes a problem."

Now that the researchers have trapped the offending material in their adsorbent, they want to analyze it with advanced organic chemistry techniques. "We want to identify the material and characterize the nature of its interaction with the adsorbent," said Clark, who will discuss the colloidal adsorbent at the 228th American Chemical Society national meeting in Philadelphia. "Then we can look for ways to further improve both the adsorbent and the membrane."

The National Science Foundation and National Water Research Institute funded the work.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>