Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-Bacterial Additive Found in Maryland Streams

19.08.2004


A toxic chemical used in hand soaps, cleaners and other personal care products to kill germs is deposited and remains in the environment long after the products are used, according to researchers at the Johns Hopkins Bloomberg School of Public Health. The chemical—3,4,4’-trichlorocarbanilide (triclocarban), marketed under the trademark TCC™—is a non-agricultural polychlorinated phenyl urea pesticide that has been widely used for decades to kill bacteria. The researchers were among the first to detect concentrations of triclocarban in rivers and influent of wastewater treatment facilities. In some instances, they detected concentrations of triclocarban in waterways at levels 20-fold higher than previously reported. The study furnishes the first peer-reviewed environmental data of triclocarban contamination in U.S. water resources. It is published in the online edition of Environmental Science & Technology.



“Our study shows that environmental contamination with triclocarban is widespread but greatly underreported because conventional monitoring techniques cannot detect it,” said the study’s lead author Rolf U. Halden, PhD, PE, assistant professor of the School’s Department of Environmental Health Sciences and founding member of its Center for Water and Health. “We had to specifically develop a new method, termed liquid chromatography electrospray ionization mass spectrometry (LC/ESI/MS), to detect triclocarban in water. Using this new method, we found the disinfectant in all Maryland streams we examined. Now the big question is what are the ecological and human health consequences of triclocarban in the environment? From the chemical structure, one would expect the compound to concentrate in fish and bio-accumulate in the food chain, but at this point we can only speculate,” said Dr. Halden. He added that more research is needed to determine whether the environmental contamination discovered translates into human exposure and any corresponding long-term risks.

Prior to Dr. Halden’s research, the most recent data on the fate of triclocarban in wastewater were from 1975, and no peer-reviewed studies were conducted on the occurrence of the chemical in U.S. water resources. Dr. Halden and his summer research intern, Daniel H. Paull, now a graduate student in the Chemistry department at Johns Hopkins University, analyzed water samples taken from rivers in and around Baltimore, Md., as well as from local water filtration and wastewater treatment plants.


In these samples, the researchers detected triclocarban in river water at concentrations of up to 5.6 micrograms per liter (parts-per-billion) and in wastewater at 6.75 ppb. The highest detected concentrations in surface waters of the Greater Baltimore area were 20 fold higher than previously reported levels, which are currently used by the United States Environmental Protection Agency for evaluation of the ecological and human health risks of triclocarban. The antimicrobial was not detected in any samples of residential well water and municipal drinking water.

“It’s somewhat unsettling that we’ve been using this persistent disinfectant for almost half a century at rates approaching 1 million pounds per year and still have essentially no idea of what exactly happens to the compound after we flush it down the drain. Further studies are needed to determine the effect of triclocarban on aquatic life and potential pathways of unwanted human exposure,” said Dr. Halden.

“Analysis of Triclocarban in Aquatic Samples by Liquid Chromatography Electrospray Ionization Mass Spectrometry” was written by Rolf U. Halden and Daniel H. Paull.

The research was supported by the National Institute for Environmental Health Sciences through the Johns Hopkins Center in Urban and Environmental Health, the Johns Hopkins Bloomberg School of Public Health Faculty Innovation Award and the Johns Hopkins Center for a Livable Future.

Kenna Lowe | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>