Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siberian forest fires partly to blame for Seattle area violating EPA ozone limit

17.08.2004


Smoke from giant Siberian forest fires pushed one measure of Seattle’s air quality past federal environmental limits on at least one day in 2003, new research shows.

And the rapidly changing climate in northern latitudes makes it likely such fires will have increasingly serious ramifications for air quality all along the West Coast of North America, said Dan Jaffe, an environmental scientist at the University of Washington, Bothell.

"In the past, we haven’t considered that long-range transport can bring in pollution levels that are significant," Jaffe said. "What we’re finding is that these events can bring in significant levels of pollution, even to urban areas where the levels already are relatively high."



In the spring and summer of 2003, Siberian forest fires consumed 46.7 million acres, or nearly 73,000 square miles – an area slightly larger than the state of Washington. That was more than twice the annual average from 1996 until 2003. The fires burned most intensely during May and June, and the smoke plume was tracked by satellites and detected during a research flight off the Washington coast on June 2.

Between May 27 and June 9, air quality monitors in British Columbia and Washington detected levels of ozone that were higher than average for that period. Previous daily data had been gathered from May through September in 1996 through 2003. Ozone readings during that time varied according to temperature, but generally ranged from a low of a few parts per billion by volume to around 80 parts per billion. Between June 1 and June 6, the monitor sites recorded ozone nine to 17 parts per billion by volume higher than normal, and the surface monitoring suggested a continual influence from the Siberian fires, as did the June 2 research flight.

On June 6, the ozone-monitoring site at Enumclaw, Wash., about 30 miles southeast of Seattle, registered an eight-hour average of 96 parts per billion by volume. The U.S. Environmental Protection Agency limit is 80 parts per billion for an eight-hour period.

In the upper atmosphere, ozone protects the Earth from harmful solar ultraviolet rays. In the lower atmosphere and at the surface it is a pollutant – found, for instance, in smoke and automobile exhaust – that can cause various health problems, particularly respiratory difficulties.

Ozone levels tend to rise with temperature, but the level recorded on June 6 exceeded what was expected for the temperature that day, Jaffe said. The high temperature that day at Seattle-Tacoma International Airport, about 90 degrees, had been recorded 12 times from 1996 through 2002, with an average eight-hour ozone level of about 79 parts per billion on those days. The 96 parts per billion on June 6 was substantially higher, and virtually all of the excess could be attributed to the Siberian fires.

"Would we have violated the EPA standard without the Siberian fires? It would have been really close. I don’t think we would have," Jaffe said.

He noted that despite the Siberian smoke, the vast majority of ozone registered in Enumclaw on June 6, 2003, came from local sources.

Jaffe is the lead author of a paper detailing the work that has been accepted for publication in an upcoming issue of Geophysical Research Letters and will be published online Aug. 20. Co-authors are Isaac Bertschi, also from the UW Bothell campus; Lyatt Jaegle from the UW Seattle campus; Paul Novelli of the National Oceanic and Atmospheric Administration; Jeffrey Reid and Douglas Westphal of the U.S. Naval Research Laboratory; Hiroshi Tanimoto of Japan’s National Institute for Environmental Studies; and Roxanne Vingarzan of Environment Canada. The work was supported by grants from the National Science Foundation, the Office of Naval Research and the National Aeronautics and Space Administration.

Previous research has suggested that as climate warms, northern temperate-zone forests are likely to become drier during the spring and summer, with snow melting earlier in the year and creating an earlier and more prolonged fire season.

The new research, Jaffe said, suggests a link between climate change, temperate-zone forest fires, long-range transportation of pollutants and human health. It has health implications throughout western North America, and shows that western U.S. cities might have a harder time in the future meeting air quality standards, he said.

"Siberia has perhaps warmed more than anywhere else on the planet in the last 50 years," he said. "If there is increasing burning in Siberia, then we will see higher levels of ozone."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>