Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Into Mercury Contamination in Adirondacks

17.08.2004


Mercury is a toxic trace metal and its presence in the environment has been linked to human illness and ecological damage.



A 1997 Congressional report, which provided a quantitative human health risk assessment of mercury, estimated that between one and three percent of women of childbearing age in the United States eat sufficient amounts of fish for their fetuses to be at risk from mercury exposure.

“Over the last two decades, industrial activities have resulted in substantial emissions of mercury into the atmosphere,” said Thomas Holsen, professor of civil and environmental engineering at Clarkson University. “The long-distance transport of these emissions appears to have caused widespread contamination of aquatic environments, and dangerously high levels of mercury in biota. But the link between atmospheric deposition of mercury and contamination of aquatic plant life is, as of now, not well understood.”


Improving our understanding of the transport, fate and bioavailability of mercury in atmospheric, terrestrial and aquatic environments is the goal of a multiuniversity research project that brings together scientists from Clarkson University; Syracuse University; Rutgers University; and the University of Massachusetts, Lowell.

The research team is conducting the $2 million, National Science Foundation-funded study over the next four years in Clarkson’s own backyard: the Adirondack region of New York, an acid-sensitive forested area with high concentrations of mercury in fish relative to other lake districts in eastern North America.

In addition to Holsen, Clarkson researchers include Stefan Grimberg, professor of civil and environmental engineering, and Michael Twiss, professor of biology.

“We know that mercury enters an area primarily as atmospheric deposition,” explained Twiss, “and that once the mercury is carried to the soil or lakes by the hydrologic cycle, it can enter into anoxic (oxygen-poor) environments where it is transformed into methyl mercury by the action of microbes. The methyl mercury form is very toxic and lipohilic (fat loving) so that it accumulates in organisms and can magnify up the food chain.”

Existing research supports the scientists’ hypothesis that the forest canopy strongly affects the magnitude and pathways of mercury deposition to forest eco-systems. Although mobilization and transport of mercury in forests seems to be closely coupled with organic carbon dynamics, little is known of the residence time and ultimate fate of mercury in terrestrial environments.

“While microbiological transformations clearly control the accumulation of mercury in aquatic biota, interconnections with major element cycles, including sulfur and carbon, and variable redox (reduction-oxidation) conditions make it difficult to develop predictive relationships,” said Holsen. “Our research is an important step to developing a quantitative understanding of the inputs and pathways of atmospheric mercury deposition, the factors regulating the transport and transformation of mercury as it cycles through the terrestrial environment and the bioavailability of mercury in downstream aquatic ecosystems.”

Holsen and Grimberg will conduct field plot studies at Huntington Forest and laboratory studies on soil binding and microbial controls on methylation/demethylation. Holsen will also work with Twiss and Syracuse University researchers on regional field studies of mercury deposition, accumulation in soil, and presence in water and biota of lakes.

| newswise
Further information:
http://www.clarkson.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>