Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research Into Mercury Contamination in Adirondacks


Mercury is a toxic trace metal and its presence in the environment has been linked to human illness and ecological damage.

A 1997 Congressional report, which provided a quantitative human health risk assessment of mercury, estimated that between one and three percent of women of childbearing age in the United States eat sufficient amounts of fish for their fetuses to be at risk from mercury exposure.

“Over the last two decades, industrial activities have resulted in substantial emissions of mercury into the atmosphere,” said Thomas Holsen, professor of civil and environmental engineering at Clarkson University. “The long-distance transport of these emissions appears to have caused widespread contamination of aquatic environments, and dangerously high levels of mercury in biota. But the link between atmospheric deposition of mercury and contamination of aquatic plant life is, as of now, not well understood.”

Improving our understanding of the transport, fate and bioavailability of mercury in atmospheric, terrestrial and aquatic environments is the goal of a multiuniversity research project that brings together scientists from Clarkson University; Syracuse University; Rutgers University; and the University of Massachusetts, Lowell.

The research team is conducting the $2 million, National Science Foundation-funded study over the next four years in Clarkson’s own backyard: the Adirondack region of New York, an acid-sensitive forested area with high concentrations of mercury in fish relative to other lake districts in eastern North America.

In addition to Holsen, Clarkson researchers include Stefan Grimberg, professor of civil and environmental engineering, and Michael Twiss, professor of biology.

“We know that mercury enters an area primarily as atmospheric deposition,” explained Twiss, “and that once the mercury is carried to the soil or lakes by the hydrologic cycle, it can enter into anoxic (oxygen-poor) environments where it is transformed into methyl mercury by the action of microbes. The methyl mercury form is very toxic and lipohilic (fat loving) so that it accumulates in organisms and can magnify up the food chain.”

Existing research supports the scientists’ hypothesis that the forest canopy strongly affects the magnitude and pathways of mercury deposition to forest eco-systems. Although mobilization and transport of mercury in forests seems to be closely coupled with organic carbon dynamics, little is known of the residence time and ultimate fate of mercury in terrestrial environments.

“While microbiological transformations clearly control the accumulation of mercury in aquatic biota, interconnections with major element cycles, including sulfur and carbon, and variable redox (reduction-oxidation) conditions make it difficult to develop predictive relationships,” said Holsen. “Our research is an important step to developing a quantitative understanding of the inputs and pathways of atmospheric mercury deposition, the factors regulating the transport and transformation of mercury as it cycles through the terrestrial environment and the bioavailability of mercury in downstream aquatic ecosystems.”

Holsen and Grimberg will conduct field plot studies at Huntington Forest and laboratory studies on soil binding and microbial controls on methylation/demethylation. Holsen will also work with Twiss and Syracuse University researchers on regional field studies of mercury deposition, accumulation in soil, and presence in water and biota of lakes.

| newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>