Clemson students head to eye of Hurricane Charley

Clemson University students are in Florida, where they will hunt Hurricane Charley to gather research that may improve building techniques and codes to secure homes in the face of disaster.

Cos Gardner and Brian Dick, graduate students in Clemson’s civil engineering department, will meet with researchers from the University of Florida, Gainesville, and Florida International University to assemble a rapidly deployable 33-foot tall wind tower.

Each steel-reinforced platform, which weighs up to 4,500 pounds, is designed to withstand hurricane-force winds and has special securing legs. The platforms can be fully extended and secured in place in as little as 20 minutes. The platforms feature three anemometers, specifically designed to operate in high-wind storms. The tower will communicate a series of wind-speed readings — from 33 feet, a standard reference height, and 15 feet, the height of a typical single-story home — to provide near real-time data to researchers via satellite.

The researchers also will contact homeowners who have partnered with the universities to have their homes pre-wired for multiple rooftop pressure monitoring devices in the event of a hurricane. The devices, which look like 12-inch diameter aluminum frying pans, house the electronic equipment that measures wind-induced pressure on building surfaces, such as roofs and walls, and sends data to a computer secured within a strong box on the ground.

“It’s a question of understanding that hurricane damage is not always inevitable or an act of God,” said Clemson’s David Prevatt. “If we can improve our prediction of the wind forces and failure mechanisms occurring in buildings, we can develop construction materials and building codes that will help produce safer homes and minimize the fear factor.”

Clemson researchers will compare the wind-speed data and wind-pressure readings gathered during Hurricane Charley with results from models of the houses that will be tested in the atmospheric boundary layer wind tunnel at Clemson University’s Wind Load Test Facility. There, they will test their models for applicability to the real world.

“Gathering the data in a lab is easier to do. Now, we want to see how well our laboratory data is representative of real-world wind loads that occur during wind events. We want to use the facts from these full-scale experiments to justify or rebuke our laboratory models of wind forces on buildings,” Prevatt said.

Clemson’s Wind Load Test Facility is one of the nation’s top laboratories for testing the effects of wind on low-rise structures, such as homes and schools.

Clemson research has resulted in some of the most accurate wind tunnel modeling techniques currently available. This work led to development of criteria for wind-tunnel testing sponsored by the National Institute of Standards and Technology.

“Hurricane Charley is presenting a unique educational opportunity to apply our tools and knowledge in a real hurricane,” Gardner said. “It’s exciting.”

Media Contact

David Prevatt EurekAlert!

More Information:

http://www.clemson.edu

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors