Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Future Heat Waves: More Severe, More Frequent and Longer Lasting


Heat waves in Chicago, Paris, and elsewhere in North America and Europe will become more intense, more frequent and longer lasting in the 21st century, according to a new modeling study by two scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo. In the United States, heat waves will become most severe in the West and South. The findings appear in the August 13 issue of the journal Science.

Gerald Meehl and Claudia Tebaldi, both of NCAR, examined Earth’s future climate using the Parallel Climate Model, developed by NCAR and the U.S. Department of Energy (DOE). NCAR’s primary sponsor, the National Science Foundation (NSF), and DOE funded the study.

"This study provides significant insight into the complex response of global climate to possible future worldwide economic and regulatory policies," said Cliff Jacobs, program director in NSF’s division of atmospheric sciences, which funded the research. "The societal implications of this study need to be further explored."

Model results show that an increase in heat-absorbing greenhouse gases intensifies an unusual atmospheric circulation pattern already observed during heat waves in Europe and North America. As the pattern becomes more pronounced, severe heat waves occur in the Mediterranean region and the southern and western United States. Other parts of France, Germany and the Balkans also become more susceptible to severe heat waves.

"Extreme weather events will have some of the most severe impacts on human society as climate changes," says Meehl.

Heat waves can kill more people in a shorter time than almost any other climate event. According to records, 739 people died as a result of Chicago’s July, 1995, heat wave. Fifteen thousand Parisians are estimated to have died from heat in August, 2003, along with thousands of farm animals.

For the study, Meehl and Tebaldi compared present (1961-1990) and future (2080-2099) decades to determine how greenhouse gases and sulfate aerosols might affect future climate in Europe and the United States, focusing on Paris and Chicago. They assumed little policy intervention to slow the buildup of greenhouse gases.

During the Paris and Chicago heat waves, atmospheric pressure rose to values higher than usual over Lake Michigan and Paris, producing clear skies and prolonged heat. In the model, atmospheric pressure increases even more during heat waves in both regions as carbon dioxide accumulates in the atmosphere.

Model Results: Heat waves will become more severe

During the 1995 Chicago heat wave, the most severe health impacts resulted from the lack of cooling relief several nights in a row, according to health experts. In the model, the western and southern United States and the Mediterranean region of Europe experience a rise in nighttime minimum temperatures of more than 3 degrees Celsius (5.4 degrees Fahrenheit) three nights in a row.

They will occur more often:

The average number of heat waves in the Chicago area increases in the coming century by 25 percent, from 1.66 per year to 2.08. In Paris, the average number increases 31percent, from 1.64 per year to 2.15.

They will last longer:

Chicago’s present heat waves last from 5.39 to 8.85 days; future events increase to between 8.5 and 9.24 days. In Paris, present-day heat waves persist from 8.33 to 12.69 days; they stretch to between 11.39 and 17.04 days in future decades.

Cheryl Dybas | National Science Foundation
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>