Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future Heat Waves: More Severe, More Frequent and Longer Lasting

13.08.2004


Heat waves in Chicago, Paris, and elsewhere in North America and Europe will become more intense, more frequent and longer lasting in the 21st century, according to a new modeling study by two scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo. In the United States, heat waves will become most severe in the West and South. The findings appear in the August 13 issue of the journal Science.



Gerald Meehl and Claudia Tebaldi, both of NCAR, examined Earth’s future climate using the Parallel Climate Model, developed by NCAR and the U.S. Department of Energy (DOE). NCAR’s primary sponsor, the National Science Foundation (NSF), and DOE funded the study.

"This study provides significant insight into the complex response of global climate to possible future worldwide economic and regulatory policies," said Cliff Jacobs, program director in NSF’s division of atmospheric sciences, which funded the research. "The societal implications of this study need to be further explored."


Model results show that an increase in heat-absorbing greenhouse gases intensifies an unusual atmospheric circulation pattern already observed during heat waves in Europe and North America. As the pattern becomes more pronounced, severe heat waves occur in the Mediterranean region and the southern and western United States. Other parts of France, Germany and the Balkans also become more susceptible to severe heat waves.

"Extreme weather events will have some of the most severe impacts on human society as climate changes," says Meehl.

Heat waves can kill more people in a shorter time than almost any other climate event. According to records, 739 people died as a result of Chicago’s July, 1995, heat wave. Fifteen thousand Parisians are estimated to have died from heat in August, 2003, along with thousands of farm animals.

For the study, Meehl and Tebaldi compared present (1961-1990) and future (2080-2099) decades to determine how greenhouse gases and sulfate aerosols might affect future climate in Europe and the United States, focusing on Paris and Chicago. They assumed little policy intervention to slow the buildup of greenhouse gases.

During the Paris and Chicago heat waves, atmospheric pressure rose to values higher than usual over Lake Michigan and Paris, producing clear skies and prolonged heat. In the model, atmospheric pressure increases even more during heat waves in both regions as carbon dioxide accumulates in the atmosphere.

Model Results: Heat waves will become more severe

During the 1995 Chicago heat wave, the most severe health impacts resulted from the lack of cooling relief several nights in a row, according to health experts. In the model, the western and southern United States and the Mediterranean region of Europe experience a rise in nighttime minimum temperatures of more than 3 degrees Celsius (5.4 degrees Fahrenheit) three nights in a row.

They will occur more often:

The average number of heat waves in the Chicago area increases in the coming century by 25 percent, from 1.66 per year to 2.08. In Paris, the average number increases 31percent, from 1.64 per year to 2.15.

They will last longer:

Chicago’s present heat waves last from 5.39 to 8.85 days; future events increase to between 8.5 and 9.24 days. In Paris, present-day heat waves persist from 8.33 to 12.69 days; they stretch to between 11.39 and 17.04 days in future decades.

Cheryl Dybas | National Science Foundation
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>