Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future Heat Waves: More Severe, More Frequent and Longer Lasting

13.08.2004


Heat waves in Chicago, Paris, and elsewhere in North America and Europe will become more intense, more frequent and longer lasting in the 21st century, according to a new modeling study by two scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo. In the United States, heat waves will become most severe in the West and South. The findings appear in the August 13 issue of the journal Science.



Gerald Meehl and Claudia Tebaldi, both of NCAR, examined Earth’s future climate using the Parallel Climate Model, developed by NCAR and the U.S. Department of Energy (DOE). NCAR’s primary sponsor, the National Science Foundation (NSF), and DOE funded the study.

"This study provides significant insight into the complex response of global climate to possible future worldwide economic and regulatory policies," said Cliff Jacobs, program director in NSF’s division of atmospheric sciences, which funded the research. "The societal implications of this study need to be further explored."


Model results show that an increase in heat-absorbing greenhouse gases intensifies an unusual atmospheric circulation pattern already observed during heat waves in Europe and North America. As the pattern becomes more pronounced, severe heat waves occur in the Mediterranean region and the southern and western United States. Other parts of France, Germany and the Balkans also become more susceptible to severe heat waves.

"Extreme weather events will have some of the most severe impacts on human society as climate changes," says Meehl.

Heat waves can kill more people in a shorter time than almost any other climate event. According to records, 739 people died as a result of Chicago’s July, 1995, heat wave. Fifteen thousand Parisians are estimated to have died from heat in August, 2003, along with thousands of farm animals.

For the study, Meehl and Tebaldi compared present (1961-1990) and future (2080-2099) decades to determine how greenhouse gases and sulfate aerosols might affect future climate in Europe and the United States, focusing on Paris and Chicago. They assumed little policy intervention to slow the buildup of greenhouse gases.

During the Paris and Chicago heat waves, atmospheric pressure rose to values higher than usual over Lake Michigan and Paris, producing clear skies and prolonged heat. In the model, atmospheric pressure increases even more during heat waves in both regions as carbon dioxide accumulates in the atmosphere.

Model Results: Heat waves will become more severe

During the 1995 Chicago heat wave, the most severe health impacts resulted from the lack of cooling relief several nights in a row, according to health experts. In the model, the western and southern United States and the Mediterranean region of Europe experience a rise in nighttime minimum temperatures of more than 3 degrees Celsius (5.4 degrees Fahrenheit) three nights in a row.

They will occur more often:

The average number of heat waves in the Chicago area increases in the coming century by 25 percent, from 1.66 per year to 2.08. In Paris, the average number increases 31percent, from 1.64 per year to 2.15.

They will last longer:

Chicago’s present heat waves last from 5.39 to 8.85 days; future events increase to between 8.5 and 9.24 days. In Paris, present-day heat waves persist from 8.33 to 12.69 days; they stretch to between 11.39 and 17.04 days in future decades.

Cheryl Dybas | National Science Foundation
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>