Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Removing Dams Can Restore Wildlife Habitat at Small Cost

04.08.2004


By applying new mathematical techniques to river ecology, a University of Maryland biology professor has found that removing dams to reconnect rivers in a watershed like Oregon’s Willamette River could result in significant wildlife habitat restoration benefits at a comparatively small economic cost.



William Fagan, associate professor of biology at the University of Maryland, presented his findings at the Society for Conservation Biology’s Annual meeting, last week at Columbia University.

Fagan’s study looks at the connectivity of an entire watershed, a critical element in the survival of many species of freshwater fish. "Rivers have a unique ecology, because of the branching geometry they exhibit," says Fagan. "My analyses call attention to the importance of connectivity in river systems."


That importance was highlighted in another of Fagan’s recent studies, where he demonstrated that for fishes native to the Sonoran Desert, riverine species with fragmented distributions are more prone to extinction than those with more continuous distributions.

Restoring River Connectivity
While the effects of breaking up wildlife habitat on land with development and other human manipulation have been heavily studied, there has been far less research on what happens to migratory species in freshwater systems when their habitat is fragmented. "Fragmentation has different consequences in freshwater systems than in terrestrial habitats," says Fagan.

For example, migratory fish, such as Pacific salmon in the northwest, need different areas of the river system to complete their life cycles. Pacific salmon spawn upstream in fresh water, but develop in the ocean. Consequently, an individual fish must make two passages through the same riverine system -- one downstream as a juvenile, and one upstream when it’s ready to mate.

"Dams can block or hinder those movements, and consequently there is much discussion about the benefits of reconnecting rivers by removing dams," Fagan says. "However, most of the focus is on removing dams one at a time. My colleagues and I looked at would happen if some dams were removed in a whole watershed and areas of the river habitat were reconnected. We wanted to see what kind of balancing act exists between economic costs of removing dams and the benefits of restoration when the analyses are done at the landscape scale."

Using a system of dams in the Willamette River in Oregon, a habitat for Pacific salmon, as a test case, Fagan and his colleagues explored the economic costs and environmental benefits by applying new math analysis techniques, termed combinatorial multiobjective programming for stream networks, to the question.

"Because of the hierarchical geometry of river systems, you can sometimes get a lot of restoration action with a relatively small economic loss if you consider dam removal systematically at the watershed scale," Fagan says. "Restoration benefits would include increased population sizes of key species of migratory fish, increased dispersal of other species throughout the landscape and return of the natural flow."

Sonoran Desert Fish Show Effects of Fragmentation
In the study that shows the importance connected river habitat for some riverine species, Fagan used mathematical analyses to examine more than 160 years of data on Sonoran Desert fish species in the Colorado River. The goal - to see if patterns of species’ distribution in the past could be a guide as to which species today will be more prone to extinction because of human manipulation of their river habitats.

One such endangered species is the Colorado pikeminnow. A large fish -- an adult ranges between four and six feet in length -- the Colorado pikeminnow must migrate hundreds of kilometers to carry out its life cycle. Damming and diversion of its river habitat and widespread introduction of sport fishes such as bass, which feed on the young pikeminnow, are threatening the native Colorado pike-minnow with extinction.

Using mathematical and statistical techniques to analyze data from thousands of historical records and maps, made as far back as the 1840’s by the U.S.-Mexican Boundary Commission, along with data from the past 20 years, Fagan found that the species most likely to have gone extinct since historic times are those that had more highly fragmented distributions.

"Species that historically have had fragmented distributions have had a tougher time than those that had more cohesive distributions. We show that those species that were historically fragmented have suffered more loss," says Fagan. "That implies that today, those species whose distributions more fragmented because of human activity are more at risk for extinction."

Collaborators on the studies were: Dam Removal - Michael Kuby, Arizona State University; Charles ReVelle, Johns Hopkins University; William Graf, University of South Carolina; Desert Fish, funded by the National Science Foundation - Peter Unmack, Arizona State University; Craig Aumann, Christina Kennedy, University of Maryland.

| newswise
Further information:
http://www.umd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>