Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke study disputes idea that trees can ’relocate’quickly in response to climate change

02.08.2004


In a study with implications for how North American trees might respond to a changing climate, molecular information collected by Duke University researchers refutes a widely accepted theory that many of the continent’s tree species migrated rapidly from the deep South as glaciers retreated at the end of the last Ice Age.



"When you put the molecular data together with other lines of evidence, it suggests that maybe they didn’t move as fast as we previously thought," said James Clark, H.L. Blomquist Professor of Biology at Duke’s Nicholas School of the Environment and Earth Sciences.

"Maybe the species that are growing far to the north today weren’t far to the south during the last glacial," Clark said in an interview. "Maybe, in fact, they were further north near the edge of the ice and therefore didn’t have to migrate as fast."


A talk on the research by Clark, Clark’s research associate Jason McLachlan and associate professor of biology Paul Manos will be presented at a session beginning at 1:30 p.m. on Wednesday, Aug. 4, in Meeting Room D136 of the Oregon Convention Center during the Ecological Society of America’s 2004 annual meeting in Portland.

In an interview, Clark said fossil evidence has led many scientists to conclude that many tree species now occupying former glaciated areas migrated north over an interval of a few thousand years from deep southern refuges along the southern Atlantic and Gulf coastal regions.

His and some other research groups have challenged that interpretation previously, although their objections "were never really taken seriously," Clark said. "One of the main issues for us was the fact that when you start to look at how far seeds disperse for modern trees and put that together with models of population spread, it’s very difficult for a population of trees to move that fast."

Instead of analyzing fossil data, Clark did population modeling in concert with McLachlan, a post-doctoral researcher with expertise in molecular analysis, and with Manos, who has expertise in molecular systematics, to assess the situation from a genetics standpoint. They focused on variations in heritable genetic sequences, or "haplotypes," that were isolated from the leaves of various kinds of modern trees.

The researchers used tree species such as red maple and beech that still grow throughout the region that would have been crossed in any ancient migrations. Clark said different trees of the same species can have a variety of different haplotype forms. But he and the others reasoned that any particular haplotype present in southern tree types at the end of the glacial period should still be found there today.

"Instead what we found is that a lot of these haplotypes in northern trees extend just south of what was once the ice sheet, but no further south," Clark said. "That’s exactly the distribution you would predict if they were confined to areas near the ice and moved further north."

Buffer zones near those ancient ice sheets are often envisioned as exceptionally cold and treeless. But Clark said his team’s findings suggest there was a more benign local environment.

"It means the trees were much closer to the ice than we thought. Maybe there weren’t the really severe winters there we traditionally think of. It could be that the climate of that time is something we don’t fully understand yet."

The team’s findings may affect current forecasts about how contemporary climate change might cause North American trees to migrate. The Duke group’s molecular evidence suggests that some species might not be able to relocate fast enough to adjust to rapid climate change, Clark said.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>