Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Duke study disputes idea that trees can ’relocate’quickly in response to climate change


In a study with implications for how North American trees might respond to a changing climate, molecular information collected by Duke University researchers refutes a widely accepted theory that many of the continent’s tree species migrated rapidly from the deep South as glaciers retreated at the end of the last Ice Age.

"When you put the molecular data together with other lines of evidence, it suggests that maybe they didn’t move as fast as we previously thought," said James Clark, H.L. Blomquist Professor of Biology at Duke’s Nicholas School of the Environment and Earth Sciences.

"Maybe the species that are growing far to the north today weren’t far to the south during the last glacial," Clark said in an interview. "Maybe, in fact, they were further north near the edge of the ice and therefore didn’t have to migrate as fast."

A talk on the research by Clark, Clark’s research associate Jason McLachlan and associate professor of biology Paul Manos will be presented at a session beginning at 1:30 p.m. on Wednesday, Aug. 4, in Meeting Room D136 of the Oregon Convention Center during the Ecological Society of America’s 2004 annual meeting in Portland.

In an interview, Clark said fossil evidence has led many scientists to conclude that many tree species now occupying former glaciated areas migrated north over an interval of a few thousand years from deep southern refuges along the southern Atlantic and Gulf coastal regions.

His and some other research groups have challenged that interpretation previously, although their objections "were never really taken seriously," Clark said. "One of the main issues for us was the fact that when you start to look at how far seeds disperse for modern trees and put that together with models of population spread, it’s very difficult for a population of trees to move that fast."

Instead of analyzing fossil data, Clark did population modeling in concert with McLachlan, a post-doctoral researcher with expertise in molecular analysis, and with Manos, who has expertise in molecular systematics, to assess the situation from a genetics standpoint. They focused on variations in heritable genetic sequences, or "haplotypes," that were isolated from the leaves of various kinds of modern trees.

The researchers used tree species such as red maple and beech that still grow throughout the region that would have been crossed in any ancient migrations. Clark said different trees of the same species can have a variety of different haplotype forms. But he and the others reasoned that any particular haplotype present in southern tree types at the end of the glacial period should still be found there today.

"Instead what we found is that a lot of these haplotypes in northern trees extend just south of what was once the ice sheet, but no further south," Clark said. "That’s exactly the distribution you would predict if they were confined to areas near the ice and moved further north."

Buffer zones near those ancient ice sheets are often envisioned as exceptionally cold and treeless. But Clark said his team’s findings suggest there was a more benign local environment.

"It means the trees were much closer to the ice than we thought. Maybe there weren’t the really severe winters there we traditionally think of. It could be that the climate of that time is something we don’t fully understand yet."

The team’s findings may affect current forecasts about how contemporary climate change might cause North American trees to migrate. The Duke group’s molecular evidence suggests that some species might not be able to relocate fast enough to adjust to rapid climate change, Clark said.

Monte Basgall | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>