Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lake research offers clues to managing crayfish invasions


Rusty crayfish, an invasive species now crawling across the rocky bottoms of lakes and streams throughout the United States and Canada, may not always have a stronghold once they enter these bodies of water.

The findings, part of an ongoing study at the University of Wisconsin-Madison, suggest that the type of interaction among rusty crayfish, fish and aquatic plants may tip the scale, favoring either the invader or native species. This knowledge, the researchers note, may lead to new strategies for removing these trespassers.

Details of the research will be presented Wednesday, Aug. 4, at the annual meeting of the Ecological Society of America in Portland, Ore.

Native to the streams of Ohio, Kentucky and Tennessee, rusty crayfish - measuring up to five inches long - have slowly infiltrated lakes far and wide, including those in New Mexico and Ontario.

Once used for bait, rusty crayfish now are partly responsible for anglers’ declining number of fish catches because they alter fish habitat, ultimately altering fish populations.

For example, these intruders eat fish eggs, displace animals native to the waters and "mow down" aquatic plants - a source of food and shelter for fish, says Brian Roth, a graduate student at UW-Madison’s Center for Limnology and a presenter at the meeting. "They have really dramatic and traumatic effects on the ecosystem."

To date, the promise of successfully removing rusty crayfish and restoring the habitat has been bleak. For example, bait traps tend to catch only the largest rusty crayfish, and biocides, chemicals proven to wipe them out, obliterate everything else in the lake.

But one strategy for managing these invaders once they enter a lake might come from Roth’s preliminary data showing that lakes - even ones similar in water chemistry and the amount of rocky substrate crayfish call home - can have either a low or high abundance of these invaders.

Donning his scuba gear, Roth went underwater to better understand why rusty crayfish are more abundant in certain lakes. During a three-year period, he surveyed six lakes and collected the rusty crayfish that crawled across the rocky bottom in each sampling area. The number of crayfish ranged from just five per square meter in one lake to around 200 in another, the majority of which were newborn crayfish.

Roth and his collaborators then compared the number of crayfish in each sampling area to data collected by another UW-Madison group studying the number of fish and aquatic plants in those same areas.

They found that two of the testing lakes, just five miles apart and similar in water chemistry, looked very different underwater in terms of rusty crayfish, fish and plant life. While Big Lake had a high abundance of the invasive species, but low abundance of bluegills and plants, Wild Rice Lake showed the opposite.

The preliminary findings, says Roth, suggest that alternate states of rusty crayfish abundance exist among lakes. In other words, they can either dominate or be a minor influence. This can happen, he adds, because of the interaction among fish, their habitat and rusty crayfish.

When the crayfish population is small, Roth explains, there tend to be more fish, which feed heavily on the baby crustaceans and, as a result, prevent them from reaching adulthood and reproducing. However, when the crayfish population is large, he says, they overwhelm their predators by producing more offspring and destroying the plant life that protects fish.

"That these alternate states exist gives us some hope that we might be able to take lakes infested by rusty crayfish and force the system from one state to another," says Roth.

To test this theory, he and other researchers are conducting an experiment in which they have set up 300 rusty crayfish traps at the bottom of a 150-acre lake in northern Wisconsin. The objective is to determine whether fish and aquatic populations, decimated by the invaders, will grow in number as crayfish are removed.

Stephen Carpenter, a UW-Madison zoology professor and researcher at the Center for Limnology who is involved in this research, says: "If there is a tipping point in rusty crayfish ecology - so we can drive the crayfish to low levels using natural predation, plus heavy harvest by people - then we may have a tool for restoring the lakes that have been damaged by crayfish invasions."

Brian Roth | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>