Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest managers can fight invasive species that come with roads

02.08.2004


Road density in northern Wisconsin has doubled during the last 60 years, but forest managers have a time window to fight the non-native plants that often come with construction and overwhelm native plant life, according to new research discussed on Thursday, Aug. 5, at the annual Ecological Society of America conference in Portland, Ore.



"Roads disturb the soil, open the forest canopy and allow more light to reach the ground," explains Todd Hawbaker, a University of Wisconsin-Madison forestry graduate student who presented the findings. "These conditions allow invasive weeds to take hold and displace native plant life."

For his master’s thesis, Hawbaker used historic aerial photographs of 17 townships in northern Wisconsin to track road density during the past 60 years. He found that between 1937 and 1999 road density doubled, which was more change than he expected. "However, it’s probably a safe estimate for wooded areas in other parts of the country as well," he says.


He points out that these roads stretch beyond the state and county highways to include a vast network of local access and logging roads. In fact, in northern Wisconsin, an area considered relatively undeveloped, a visitor is rarely more than a mile from the nearest road, says Hawbaker.

One of the potential effects of building a road is the spread of invasive species. The Wisconsin researcher adds that generally the only question is how long it will take for invasive species to colonize a new road.

To help answer that question, Hawbaker used a computer model to simulate plant invasions along roads using a variety of dispersal patterns. Usually, seeds of invasive species are spread by animals or wind over short distances, but on rare occasions can also be spread over long distances by animals, wind or vehicles. When successful, these long-distance dispersal events allow invasive species to rapidly colonize new roads.

"We found a lag time of up to 60 years between when a road is built and when a road is completely covered by invasive species," explains Hawbaker, referring to the results. "The actual time lag depends on the invasive species’ dispersal capabilities and the density of roads. The time lag decreases substantially over time as new roads are added."

That window is both a problem and an opportunity, says Volker Radeloff, a forestry professor who supervised Hawbaker’s work. "On one hand, people won’t see invasives immediately, and they may assume it’s not an issue and underestimate the ecological impact of roads. But on the other hand, there is a window of time to do something."

The best defense against invasive species is good monitoring by forest managers and quick action against new satellite populations, according to Radeloff and Hawbaker. "It actually pays to be proactive in this case," says Radeloff.

And, as the window period gets shorter when road density increases, another solution is to carefully consider whether or not to build new roads. "Areas without roads are quickly becoming treasures," adds Radeloff.

These findings, he says, lend support to a federal policy aimed at conserving roadless areas in national forests and grasslands; the rule has been the target of litigation in several states, and has recently been changed to allow state governors to build roads in formerly roadless areas for certain purposes.

Todd Hawbaker | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>