Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forest managers can fight invasive species that come with roads

02.08.2004


Road density in northern Wisconsin has doubled during the last 60 years, but forest managers have a time window to fight the non-native plants that often come with construction and overwhelm native plant life, according to new research discussed on Thursday, Aug. 5, at the annual Ecological Society of America conference in Portland, Ore.



"Roads disturb the soil, open the forest canopy and allow more light to reach the ground," explains Todd Hawbaker, a University of Wisconsin-Madison forestry graduate student who presented the findings. "These conditions allow invasive weeds to take hold and displace native plant life."

For his master’s thesis, Hawbaker used historic aerial photographs of 17 townships in northern Wisconsin to track road density during the past 60 years. He found that between 1937 and 1999 road density doubled, which was more change than he expected. "However, it’s probably a safe estimate for wooded areas in other parts of the country as well," he says.


He points out that these roads stretch beyond the state and county highways to include a vast network of local access and logging roads. In fact, in northern Wisconsin, an area considered relatively undeveloped, a visitor is rarely more than a mile from the nearest road, says Hawbaker.

One of the potential effects of building a road is the spread of invasive species. The Wisconsin researcher adds that generally the only question is how long it will take for invasive species to colonize a new road.

To help answer that question, Hawbaker used a computer model to simulate plant invasions along roads using a variety of dispersal patterns. Usually, seeds of invasive species are spread by animals or wind over short distances, but on rare occasions can also be spread over long distances by animals, wind or vehicles. When successful, these long-distance dispersal events allow invasive species to rapidly colonize new roads.

"We found a lag time of up to 60 years between when a road is built and when a road is completely covered by invasive species," explains Hawbaker, referring to the results. "The actual time lag depends on the invasive species’ dispersal capabilities and the density of roads. The time lag decreases substantially over time as new roads are added."

That window is both a problem and an opportunity, says Volker Radeloff, a forestry professor who supervised Hawbaker’s work. "On one hand, people won’t see invasives immediately, and they may assume it’s not an issue and underestimate the ecological impact of roads. But on the other hand, there is a window of time to do something."

The best defense against invasive species is good monitoring by forest managers and quick action against new satellite populations, according to Radeloff and Hawbaker. "It actually pays to be proactive in this case," says Radeloff.

And, as the window period gets shorter when road density increases, another solution is to carefully consider whether or not to build new roads. "Areas without roads are quickly becoming treasures," adds Radeloff.

These findings, he says, lend support to a federal policy aimed at conserving roadless areas in national forests and grasslands; the rule has been the target of litigation in several states, and has recently been changed to allow state governors to build roads in formerly roadless areas for certain purposes.

Todd Hawbaker | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>