Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lehmann lovegrass won’t succumb to fire

02.08.2004


Using fire to control the introduced Lehmann lovegrass won’t work, researchers report.



The finding is bad news for land managers seeking a way to control the introduced grass. Fire was thought to be one way to restore native grasses and prevent further spread of the non-native species.

Regardless of the time of year Lehmann lovegrass was burned, the grass grew back and, in some cases, increased in amount, report ecologists from the University of Arizona in Tucson. "We had hoped to find that something would reduce the non-native species, or favor the native over it, which is not what we see," said Erika L. Geiger, a doctoral candidate in UA’s School of Natural Resources.


Geiger will give her presentation, "Maintaining grasslands: the interaction of fire, climate, and non-native species," on Thursday, Aug. 5, at 1:30 p.m. in Room B110 of the Oregon Convention Center in Portland, Ore., at the annual meeting of the Ecological Society of America. Guy R. McPherson, a UA professor of natural resources, is a co-author on the presentation. The research was funded by the U.S. Department of Defense.

Natural resource managers have been looking for ways to manage the spread of Lehmann lovegrass, also known as Eragrostis lehmanniana. The exotic grass, introduced in the Southwest during the 1930s to control erosion and to feed livestock, has been slowly taking over native grasslands ever since.

Non-native species can alter ecosystems by supplanting native species. The consequences of having a non-native species present depend on its characteristics and the way it interacts with the ecological community it’s invading.

"Success of biological invasions is species- and site-specific," McPherson said. Besides replacing the natives, introduced plants could permanently alter the characteristics of an ecosystem by affecting such processes as nutrient cycling and relationships between species. "Biological invasions usually cause extinction, so we have to assume that Lehmann is not a good thing," he said.

Historical records have shown that Lehmann lovegrass is capable of returning with a vengeance after severe droughts that cause native species to die, McPherson said. Just a pinch of the lovegrass contains at least 300 seeds, allowing it to spread easily and making the introduced grass a formidable foe for anyone trying to eliminate or control it.

Land managers use fire to manage Lehmann lovegrass and other non-native grasses, he said.
To keep prescribed burns under control, many land managers prefer to burn grasslands in the spring, when the plants and soil have more moisture, and the temperatures are cooler.

The fire’s temperature could affect how well a particular type of grass responds.

After a spring burn, grasses may grow back more quickly because the temperature of the fire will be lower, and moisture remaining in the soil helps the grass recover. In contrast, summer fires burn much hotter because the grasses are dry.

To test current land management practices against other options, Geiger set up fifty-four experimental 2.5 acre (one hectare) plots at various locations on the Fort Huachuca Military Reservation near Sierra Vista, Ariz.

One-third of the plots contained only native grasses, one-third only non-native grasses, and one-third had a mix. She then assigned one of three treatments to each plot, either burn in the spring, burn in the summer, or leave the plot unburned.

Certain species might respond differently depending on the amount of rainfall received before and after the burn, Geiger said. "It really is a species-by-situation response." She continued the experiment for two years to track how the grasses responded from year to year.

The researchers had expected that, after burning, the native species would grow back faster than the introduced species. But that’s not what the team found.

The researchers found that no matter what that year’s rainfall or which season managers burn, the proportion of Lehmann lovegrass either remained the same or slightly increased.

McPherson said that it’s tempting to think that, given that there was little change in ratio between non-native and native grasses, Lehmann lovegrass has reached a steady state and will not spread any further. However, researchers had thought the same thing in the 1980s, he said, but since then the lovegrass has spread from Arizona to New Mexico and even into areas of northwestern Mexico.

Geiger and McPherson both believe that fire is a useful tool for reducing hazardous fuels that can feed forest fires and that fire still has the potential to eliminate non-native species, just not Lehmann lovegrass.

"It might be time to dedicate our efforts on other species," McPherson said. "We’ve thrown a lot of time, energy and money at Lehmann lovegrass, with no apparent success. Perhaps we should dedicate a similar amount of time, energy and money at the remaining biological invaders."

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>