Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lehmann lovegrass won’t succumb to fire

02.08.2004


Using fire to control the introduced Lehmann lovegrass won’t work, researchers report.



The finding is bad news for land managers seeking a way to control the introduced grass. Fire was thought to be one way to restore native grasses and prevent further spread of the non-native species.

Regardless of the time of year Lehmann lovegrass was burned, the grass grew back and, in some cases, increased in amount, report ecologists from the University of Arizona in Tucson. "We had hoped to find that something would reduce the non-native species, or favor the native over it, which is not what we see," said Erika L. Geiger, a doctoral candidate in UA’s School of Natural Resources.


Geiger will give her presentation, "Maintaining grasslands: the interaction of fire, climate, and non-native species," on Thursday, Aug. 5, at 1:30 p.m. in Room B110 of the Oregon Convention Center in Portland, Ore., at the annual meeting of the Ecological Society of America. Guy R. McPherson, a UA professor of natural resources, is a co-author on the presentation. The research was funded by the U.S. Department of Defense.

Natural resource managers have been looking for ways to manage the spread of Lehmann lovegrass, also known as Eragrostis lehmanniana. The exotic grass, introduced in the Southwest during the 1930s to control erosion and to feed livestock, has been slowly taking over native grasslands ever since.

Non-native species can alter ecosystems by supplanting native species. The consequences of having a non-native species present depend on its characteristics and the way it interacts with the ecological community it’s invading.

"Success of biological invasions is species- and site-specific," McPherson said. Besides replacing the natives, introduced plants could permanently alter the characteristics of an ecosystem by affecting such processes as nutrient cycling and relationships between species. "Biological invasions usually cause extinction, so we have to assume that Lehmann is not a good thing," he said.

Historical records have shown that Lehmann lovegrass is capable of returning with a vengeance after severe droughts that cause native species to die, McPherson said. Just a pinch of the lovegrass contains at least 300 seeds, allowing it to spread easily and making the introduced grass a formidable foe for anyone trying to eliminate or control it.

Land managers use fire to manage Lehmann lovegrass and other non-native grasses, he said.
To keep prescribed burns under control, many land managers prefer to burn grasslands in the spring, when the plants and soil have more moisture, and the temperatures are cooler.

The fire’s temperature could affect how well a particular type of grass responds.

After a spring burn, grasses may grow back more quickly because the temperature of the fire will be lower, and moisture remaining in the soil helps the grass recover. In contrast, summer fires burn much hotter because the grasses are dry.

To test current land management practices against other options, Geiger set up fifty-four experimental 2.5 acre (one hectare) plots at various locations on the Fort Huachuca Military Reservation near Sierra Vista, Ariz.

One-third of the plots contained only native grasses, one-third only non-native grasses, and one-third had a mix. She then assigned one of three treatments to each plot, either burn in the spring, burn in the summer, or leave the plot unburned.

Certain species might respond differently depending on the amount of rainfall received before and after the burn, Geiger said. "It really is a species-by-situation response." She continued the experiment for two years to track how the grasses responded from year to year.

The researchers had expected that, after burning, the native species would grow back faster than the introduced species. But that’s not what the team found.

The researchers found that no matter what that year’s rainfall or which season managers burn, the proportion of Lehmann lovegrass either remained the same or slightly increased.

McPherson said that it’s tempting to think that, given that there was little change in ratio between non-native and native grasses, Lehmann lovegrass has reached a steady state and will not spread any further. However, researchers had thought the same thing in the 1980s, he said, but since then the lovegrass has spread from Arizona to New Mexico and even into areas of northwestern Mexico.

Geiger and McPherson both believe that fire is a useful tool for reducing hazardous fuels that can feed forest fires and that fire still has the potential to eliminate non-native species, just not Lehmann lovegrass.

"It might be time to dedicate our efforts on other species," McPherson said. "We’ve thrown a lot of time, energy and money at Lehmann lovegrass, with no apparent success. Perhaps we should dedicate a similar amount of time, energy and money at the remaining biological invaders."

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>