Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing Tiny Totally Tubular Formations

27.07.2004


These may look like the tubes found by deep-sea hydrothermal vents, but these one-inch-tall iron oxide tubes were grown in the laboratory.


An accidental discovery may provide insights into the creation of tubular structures such as those found in caves and at hydrothermal vents.

While doing some electroplating work for a class project, David Stone stumbled upon a way to grow tiny tubes that look like the cave formations known as soda straws. At the time, Stone, a former sculptor and foundry worker, had just returned to school.

"I botched the experiment. I can still remember being in my carport, picking up the cathode and thinking, ’Oh shoot,’" he said. "And as I held it up to my head to throw it into the garbage, I noticed tubes growing on it. I thought, ’Hmm, tubes.’"



The tubes from the failed experiment intrigued him, so he showed the structures to several faculty members at the University of Arizona in Tucson, including UA physics professor Raymond E. Goldstein. “I was just bowled over when I saw it," Goldstein said. "It looked like something formed by a living organism.”

So Goldstein and Stone, now a doctoral candidate in UA’s department of soil, water and environmental science, teamed up to figure out how the fascinating tubules formed. Their paper, "Tubular precipitation and redox gradients on a bubbling template," will be published in the early online edition of the Proceedings of the National Academy of Sciences the week of July 26. The research was funded by the Research Corporation and the National Science Foundation.

Tubular structures in nature span a range of sizes and locations, from giant chimneys at hydrothermal vents deep in the ocean to tiny tubes formed on corroding iron.

But how such things develop is not well understood.

To expand Stone’s carport experiment, he and Goldstein used a setup similar to that used for electroplating. They constructed a rectangular glass chamber about four inches tall with a positively charged iron electrode on the top and a negatively charged iron electrode on the bottom. The researchers filled the container with mixture of water, ammonium, iron and sulfates and turned on the current.

The electric current split water into hydrogen and oxygen. As expected, tiny hydrogen bubbles gathered on the negatively charged electrode, grew larger and then broke away.

To the researchers’ surprise, after tens of minutes the electrode was covered with a forest of small tubes, which the scientists dubbed "ferrotubes."

To study the growth of ferrotubes, the researchers filmed their experiments.

Stone said, "We used a camera with this incredible microscope of a lens that would allow us to peer into this solution better than any human eye. It’s dark in there, there’s stuff swirling around. With just a little light we could see for the first time, that, Ah! There’s this obvious film forming around the bubble."

The bubbles are tiny, about one-eighth inch in diameter. As a bubble grows, a thin film forms on the bubble and then breaks apart as the bubble detaches. A bit of the film is left as a circular residue on the electrode.

That film, a special type of iron oxide known as green rust, forms when ammonia gas inside the bubble meets the iron dissolved in the surrounding fluid, say the scientists.

Each time a bubble forms and breaks, a bit of the film, or precipitate, is left. That ring of precipitate guides subsequent tube formation. As the precipitate builds up, a tiny tube of iron oxides -- rust -- develops.

Goldstein said, "The tube is a guide for the bubble, and the bubble is the template for the tube."

In nature, such formations as soda straws in caves take hundreds or thousands of years to form. But in the laboratory, Stone and Goldstein can grow a miniature forest of one-inch-long, one-eighth-inch-diameter tubules in one to two hours.

"It’s a controllable system that can be studied in the laboratory on human time scales instead of just coming upon it after the fact," said Goldstein.

That control has allowed the team to figure out exactly how the tubes are formed. A better understanding of the process will let the researchers model how natural structures, such as cave formations, are made.

Tubular structures found on a Martian meteorite had been suggested as evidence of life, he said.

Goldstein pointed out that finding a chemical means to grow such self-organizing systems highlights the fact that living organisms are not needed to create such structures.

"Such tubes can be generated and yet have nothing to do with life," he said.

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>