Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Working Towards The ‘Silent’ Aircraft Engine

22.07.2004


“When I started at Rolls-Royce last September, I didn’t think I would have the chance to work on a new engine concept.” Angel Gallo, graduate trainee, Rolls-Royce. Researchers from Cambridge University and graduate trainees from Rolls-Royce are currently working together in a quest to explore possible future designs for a completely new type of aircraft engine.

Engine manufacturer Rolls-Royce is a partner in the Cambridge-MIT Institute’s ‘Silent Aircraft’ Initiative. This is a unique three-year project, bringing together researchers from Cambridge University and the Massachusetts Institute of Technology with industrial partners, to produce the novel design for a passenger aircraft that will be radically quieter than today’s airplanes.

Engine noise is an increasingly acute environmental problem for the civil aviation industry in the UK. As part of its work on the project, Rolls-Royce is currently hosting researchers from Cambridge at its site in Derby, where its civil aerospace business is based. The Cambridge researchers — who earlier this year attended a Rolls-Royce ‘noise appreciation’ course to improve their understanding — are now working alongside Rolls-Royce graduate trainees. Both are learning how to use GENESIS, a highly sophisticated, multi-million pound design software tool developed by Rolls-Royce. They are hoping it will help them test out potential designs and technologies for a next-generation engine that will be much quieter during take-off and yet highly fuel-efficient when the aircraft is cruising at high altitude.



Senior project engineer Joe Walsh, who works in the Noise Engineering department at Rolls-Royce, says “We use tools like GENESIS to carry out the preliminary design assessment of new engines, and it contains much of the knowledge we have built up. It helps us to evaluate what the performance, weight and noise characteristics of an engine will be.

Chez Hall, Cambridge University research associate, says: “It’s going to help us explore potential designs for new engines. The Silent Aircraft engine is likely to need a completely new design. Because of this, and because we are really pushing the boundaries and coming up with some bold ideas, we were concerned about how applicable current software, like GENESIS, would be in helping us. But we have been really impressed with it so far.”

In a radical departure from current configurations, it has been decided that in the design for the Silent Aircraft, the engines will not hang below the wings. Nor will they sit in a pod above the rear of the plane — another potential design option. The project team has decided that the engines will be embedded into the body of the aircraft itself to help minimise the engine noise transmitted to the ground.

“The advantages are that this gives us more opportunities to reduce noise, as we integrate the engine with the airframe systems”, says Chez Hall. “By managing airflow over the wing and into the engine, we could have a much more efficient and quieter propulsion system. However, there are also difficulties. If there are losses in the air intake into the engine, there will be a lot of difficulty in ensuring the engine remains stable. But we ran a very thorough study of the pros and cons of embedding the engine into the airframe, and we are convinced that this is the best option.”

The collaboration on this work between Rolls-Royce and Cambridge University is two-way. Rolls-Royce, which undertakes its own research in aircraft engine noise reduction, will be sending several of its graduate trainees to spend a few months working on the project. Already, two trainees have been at Cambridge University for a month, using commercially available software to begin setting objectives for the performance of the engine during cruise. Angel Gallo, a trainee who came to Rolls-Royce after graduating from the University of Bilbao in Spain, says, “When I started at Rolls-Royce last September, I didn’t think I would have the chance to work on a new engine concept. But that is the idea in what we are doing. We are starting with basic engine configurations, and then we’ll be using the design tools to go on and study new configurations that haven’t been tried yet.”

The Cambridge researchers, meanwhile, say they are deriving great benefit from being at Rolls-Royce. “An important part of being here,” says Hall, “is having access to particular experts. People here have a huge amount of relevant knowledge, and we have the opportunity to go and bounce ideas off them and get feedback. It is very important for us to know whether they think our ideas — on fan systems, noise and operability etc — are credible. We are coming up with some very new ideas, and it is very valuable to have experts from a company like Rolls-Royce giving us feedback on the potential problems and advantages.”

Lize King | alfa
Further information:
http://www.cambridge-mit.org

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>