Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Underground Storage of Carbon Dioxide Reduces Emissions

29.06.2004


A new approach that is one of the first to successfully store carbon dioxide underground may have huge implications for global warming and the oil industry, says a University of Alberta researcher. Dr. Ben Rostron is part of an extensive team working on the $28 million International Energy Agency Weyburn CO2 Monitoring and Storage Project—the largest of its kind—that has safely buried the greenhouse gas and reduced emissions from entering the atmosphere.



“It’s one thing to say that underground is a great place to store carbon dioxide, but it’s another thing to be able to prove it as we have done,” said Rostron, from the U of A’s Faculty of Science and a co-author on a paper appearing today in GSA Today, a journal published by the Geological Society of America. “We have been able to show that you can safely capture carbon dioxide that would otherwise go back into the atmosphere, and put it back into the ground. It’s very exciting work.”

Carbon dioxide is a naturally occurring greenhouse gas in the atmosphere whose concentrations have increased as a result of human activity, such as burning coal, oil, natural gas and organic matter. CO2 emissions have been linked to global warming, and there has been a worldwide effort to reduce those emissions and their effects on the planet. The efforts in this project are one way for Canada to meet targets under the Kyoto Protocol, for example.


Carbon dioxide sequestration is being evaluated internationally as a viable means of long-term carbon dioxide storage. Rostron is part of the project started in 2000 to investigate the technical and economic feasibility of storing the gas in a partially-depleted oil reservoir in Saskatchewan. The researchers are working with Encana Corporation on their 30-year commercial carbon dioxide enhanced oil recovery operation which is designed to recover an incremental 130 million barrels of oil from the Weyburn field in Saskatchewan . The gas comes from the United States, where it is compressed and sent through a pipeline to the Weyburn field. There, Encana injects it into the reservoir and the results are observed by the project scientists and stakeholders—including regulatory agencies and government officials. More than 1.9 billion cubic metres have been injected so far.

Not only has the project demonstrated one way for the industry to economically reduced carbon dioxide emissions that would have otherwise gone into the atmosphere, but it allows the oil industry to pump carbon dioxide into its wells and produce extra oil, said Rostron. The work also demonstrates that geological sequestration can be successful, enabling wider application in other parts of the country and the world, he said.

“The oil companies have seen incremental production close to what they predicted and from the scientists’ point-of-view, we’ve been able to see a response to our techniques and been able to monitor it very, very closely,” said Rostron, the hydrogeology co-ordinator on the project. “Everything we’ve done has shown us this is a good place to store carbon dioxide.

“Countries around the world are spending millions to investigate this same technique and we’ve been able to do with success.”

The project is co-ordinated by the Petroleum Technology Research Centre and is sponsored by Natural Resources Canada, the U.S. Department of Energy, Alberta Energy Research Institute, Saskatchewan Industry and Resources, the European Community, and 10 industrial sponsors. Research is being conducted by universities, industry, federal and provincial government agencies in North America and Europe.

| newswise
Further information:
http://www.ualberta.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>