Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid urbanization in China warming region’s climate faster than other areas

23.06.2004


Rapid urbanization in southeastern China in the past 25 years is responsible for an estimated warming rate much larger than previous estimates for other periods and locations, according to a new study funded by NASA.



Researchers led by the Georgia Institute of Technology report that the mean surface temperature in the region has risen 0.09 degrees Fahrenheit (0.05 degrees Celsius) per decade since 1979. Also, nighttime low temperatures have risen much faster than the daytime high temperatures. The average reduction of the day-to-night temperature range was 0.24 degrees F (0.132 degrees C) per decade. Their findings will appear in the June 29 print edition of the journal Proceedings of the National Academy of Sciences.

To estimate the temperature changes due to urbanization, researchers used a new approach that integrated meteorological station observations, model-assimilated temperature predictions, satellite-measured greenness and China’s census data. The modeling data -- provided by the National Oceanic and Atmospheric Administration’s Centers for Environmental Prediction and the U.S. Department of Energy -- is considered more accurate than previous information because of its improvements in accounting for temperature range differences affected by cloud cover and soil moisture, the researchers note.


"These results are further evidence of the human impact on climate," says lead author Liming Zhou, a Georgia Tech researcher working with Professor Robert Dickinson, a global climate modeler in the Georgia Tech School of Earth and Atmospheric Sciences.

Carbon dioxide from industrial and automobile emissions has been suspected to be the primary force in global warming. Scientists have attributed a 0.9 degrees F (0.5 degrees C) increase in global temperature in the 20th century to a significant atmospheric increase of greenhouse gases, including carbon dioxide. They predict this increase will continue through the 21st century and cause continued increases in extreme weather, rising sea levels, and the retreat of glaciers and polar ice caps.

"Human-induced changes in land use – such as urbanization, deforestation, and agricultural and irrigation practices – can affect local and regional climate and even large-scale atmospheric circulations," Zhou explains. "They may have changed climate as much as greenhouse gases over some particular regions of land."

It is not yet possible to establish the extent to which these temperature changes affect climate on a larger scale, Zhou adds. More research must be done to make this determination because it’s a challenge to differentiate the impact of land use changes on climate from that of industrial emissions because both tend to warm the earth and decrease the day-to-night temperature range.

Most scientists agree that land use changes from urbanization create an urban heat island (UHI) that is partially responsible for the observed warming over land during the past few decades. The cities’ predominance of buildings, roads and paved surfaces with little vegetation largely explains the UHI effect.

"In this study, we focused on the climate effect of urbanization in China because it is a good case study at the maximum end of the UHI spectrum," says Zhou, who grew up in western China and worked as a weather forecaster at China’s National Meteorological Center for four years before earning a doctoral degree at Boston University in 2002.

China has experienced rapid urbanization and dramatic economic growth since its reform process started in late 1978. Its temperature change attributed to UHI is larger than the estimated 0.11 to 0.49 degrees F (0.06 to 0.27 degrees C) in the United States during the 20th century.

Because this study’s analysis is from a country with a much higher population density and focused on a period of rapid urbanization, the researchers expected their results to give higher values than those estimated in other locations and over longer periods, the authors note in their journal article. In addition to Zhou and Dickinson, the authors include Yuhong Tian of Georgia Tech, Jingyun Fang of Peking University, Qingxiang Li of the China Meteorological Administration, Robert Kaufmann and Ranga Myneni of Boston University, and Compton Tucker of NASA.

Also, the researchers caution that their estimates do not represent the urbanization effect globally, nor should they be interpreted as a denial of global warming, Zhou says.

"The UHI effect is responsible for real climatic change in urban areas, but it may not be representative of large areas," he explains. "Although significant in magnitude, our estimated UHI is still relatively small compared to the background temperature trends documented in the Chinese long-term climate record.

"However, considering its intensity and spatial extent, combined with other urban-related land use changes and increased urban pollutants, urbanization in China may have affected climate far beyond urban areas," Zhou adds.

Scientists are already giving more attention to the UHI effect and other land use changes, such as deforestation. Global climate modelers, such as Georgia Tech’s Dickinson, are working to accurately account for these effects, as well as the impact of aerosols and soot, in their predictive models.

Dickinson, who is president of the American Geophysical Union, says: "The identification of global warming in the observational records of global temperature patterns is statistically well established through numerous detailed studies. However, to assess the total, current risks of climate change for human welfare, studies such as this are suggesting the necessity to add to this global warming signal, that resulting from urbanization and other land use changes."

Jane Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>