Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid urbanization in China warming region’s climate faster than other areas

23.06.2004


Rapid urbanization in southeastern China in the past 25 years is responsible for an estimated warming rate much larger than previous estimates for other periods and locations, according to a new study funded by NASA.



Researchers led by the Georgia Institute of Technology report that the mean surface temperature in the region has risen 0.09 degrees Fahrenheit (0.05 degrees Celsius) per decade since 1979. Also, nighttime low temperatures have risen much faster than the daytime high temperatures. The average reduction of the day-to-night temperature range was 0.24 degrees F (0.132 degrees C) per decade. Their findings will appear in the June 29 print edition of the journal Proceedings of the National Academy of Sciences.

To estimate the temperature changes due to urbanization, researchers used a new approach that integrated meteorological station observations, model-assimilated temperature predictions, satellite-measured greenness and China’s census data. The modeling data -- provided by the National Oceanic and Atmospheric Administration’s Centers for Environmental Prediction and the U.S. Department of Energy -- is considered more accurate than previous information because of its improvements in accounting for temperature range differences affected by cloud cover and soil moisture, the researchers note.


"These results are further evidence of the human impact on climate," says lead author Liming Zhou, a Georgia Tech researcher working with Professor Robert Dickinson, a global climate modeler in the Georgia Tech School of Earth and Atmospheric Sciences.

Carbon dioxide from industrial and automobile emissions has been suspected to be the primary force in global warming. Scientists have attributed a 0.9 degrees F (0.5 degrees C) increase in global temperature in the 20th century to a significant atmospheric increase of greenhouse gases, including carbon dioxide. They predict this increase will continue through the 21st century and cause continued increases in extreme weather, rising sea levels, and the retreat of glaciers and polar ice caps.

"Human-induced changes in land use – such as urbanization, deforestation, and agricultural and irrigation practices – can affect local and regional climate and even large-scale atmospheric circulations," Zhou explains. "They may have changed climate as much as greenhouse gases over some particular regions of land."

It is not yet possible to establish the extent to which these temperature changes affect climate on a larger scale, Zhou adds. More research must be done to make this determination because it’s a challenge to differentiate the impact of land use changes on climate from that of industrial emissions because both tend to warm the earth and decrease the day-to-night temperature range.

Most scientists agree that land use changes from urbanization create an urban heat island (UHI) that is partially responsible for the observed warming over land during the past few decades. The cities’ predominance of buildings, roads and paved surfaces with little vegetation largely explains the UHI effect.

"In this study, we focused on the climate effect of urbanization in China because it is a good case study at the maximum end of the UHI spectrum," says Zhou, who grew up in western China and worked as a weather forecaster at China’s National Meteorological Center for four years before earning a doctoral degree at Boston University in 2002.

China has experienced rapid urbanization and dramatic economic growth since its reform process started in late 1978. Its temperature change attributed to UHI is larger than the estimated 0.11 to 0.49 degrees F (0.06 to 0.27 degrees C) in the United States during the 20th century.

Because this study’s analysis is from a country with a much higher population density and focused on a period of rapid urbanization, the researchers expected their results to give higher values than those estimated in other locations and over longer periods, the authors note in their journal article. In addition to Zhou and Dickinson, the authors include Yuhong Tian of Georgia Tech, Jingyun Fang of Peking University, Qingxiang Li of the China Meteorological Administration, Robert Kaufmann and Ranga Myneni of Boston University, and Compton Tucker of NASA.

Also, the researchers caution that their estimates do not represent the urbanization effect globally, nor should they be interpreted as a denial of global warming, Zhou says.

"The UHI effect is responsible for real climatic change in urban areas, but it may not be representative of large areas," he explains. "Although significant in magnitude, our estimated UHI is still relatively small compared to the background temperature trends documented in the Chinese long-term climate record.

"However, considering its intensity and spatial extent, combined with other urban-related land use changes and increased urban pollutants, urbanization in China may have affected climate far beyond urban areas," Zhou adds.

Scientists are already giving more attention to the UHI effect and other land use changes, such as deforestation. Global climate modelers, such as Georgia Tech’s Dickinson, are working to accurately account for these effects, as well as the impact of aerosols and soot, in their predictive models.

Dickinson, who is president of the American Geophysical Union, says: "The identification of global warming in the observational records of global temperature patterns is statistically well established through numerous detailed studies. However, to assess the total, current risks of climate change for human welfare, studies such as this are suggesting the necessity to add to this global warming signal, that resulting from urbanization and other land use changes."

Jane Sanders | EurekAlert!
Further information:
http://www.edi.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>