Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All Ecosystems Equally Productive Under Drought Conditions

14.06.2004


Under drought conditions, tropical forests can be as efficient at using water as desert ecosystems, researchers report

When push comes to shove, all ecosystems have the same maximum rain-use efficiency, a measure of total plant growth per unit of precipitation.

The finding indicates there’s an upper limit to ecosystems’ productivity, said Travis E. Huxman, a plant physiological ecologist at the University of Arizona in Tucson. He and a team of researchers calculated the upper limit, which they call RUEmax (maximum rain-use efficiency).

Life depends on the productivity of plants, Huxman pointed out, adding, "RUEmax defines the limits of that production."

However, the research indicates that under drought conditions, high-productivity systems like grasslands and forests grow even less than expected. Most of the climate-change scenarios for the next century predict an increase in extreme events, including more droughts.

Huxman said, "We originally expected drought to impact grasslands to some degree, but this finding says that if we get extreme variability, there will be even less plant growth than we originally thought."

Huxman, first author of the research report, led the research team along with Melinda D. Smith of Yale University. The team’s article, "Convergence across biomes to a common rain-use efficiency," will be published in the June 10 issue of the journal Nature. A complete list of authors and their affiliations is at the end of this article.

The work sheds light on what Huxman called "one of the oldest ecological questions on the face of the planet: how does water affect how an ecosystem works?"

Although it seems a simple question, it turns out to be a toughie, he said. "My wife can answer it for her garden, but you can’t take the information that my wife knows for her garden and apply it to many different biomes around the world."

In the early 1970s, ecologists tried to answer the question by fanning out over the globe and by taking lots and lots of ecological measurements in a variety of ecosystems during a single year. The project, called the International Biological Program (IBP), couldn’t answer that fundamental question: ecologists realized that they needed data collected in many different ecosystems over many years.

But one outcome of IBP was the establishment of many long-term study sites, including the network of Long-Term Ecological Research sites maintained by the National Science Foundation.The study sites represent a range of the world’s biomes, from the Mojave desert in Nevada to the wet tropical forest of Panama’s Barro Colorado Island to cold grass-shrub steppe of Patagonia in Argentina. Year after year, researchers at those sites collect data on the annual precipitation and annual total plant growth.

Fourteen of the sites had at least six years of such growth and precipitation data. So Huxman and his colleagues finally had the information needed to answer the question of how water affects various ecosystems.

Team member Michael Loik of the University of California, Santa Cruz, spearheaded the effort to win the funding for a series of workshops held at the National Center for Ecological Analysis and Synthesis at the University of California, Santa Barbara.

At the workshops, the scientists studied and analyzed the data.

What they found surprised them.

One hypothesis was that ecosystems that have great variabilty in precipitation, such as grasslands, would be the most responsive to rainfall. More predictable regions, such as deserts or wet tropical forests, would not respond much to variations in precipitation.

Not so. The low-precipitation regions such as deserts were much more sensitive to changes in precipitation than the group expected.

Moreover, the team found that in drought conditions, all ecosystems were equally productive.

"That’s kind of shocking," Huxman said. "In a drought year, Harvard Forest is as efficient at using water as the most arid desert is all the time."

The finding has implications for how various ecosystems will behave under future climate change, he said.

Huxman said, "For any ecosystem, if rain falls below historical minimums, our model predicts pretty substantial reductions in productivity."

Plants won’t buffer the effect of climate change on ecosystems, but rather exacerbate it, making the world a more uncertain place, he said.

"There’s enhanced variability in ecosystem processes with increased variability in precipitation," Huxman said.

He said the finding suggests that ecologists should be doing experiments to see how various types of ecosystems respond to different levels of precipitation. Huxman is doing so by simulating different-sized rain events on sites in southern Arizona and seeing how grassland and mesquite savanna ecosystems respond.

Huxman’s coauthors on the June 10 Nature paper are Melinda D. Smith of Yale University; Philip A. Fay of the Natural Resources Research Institute, Duluth, Minn.; Alan K. Knapp of Colorado State University in Fort Collins; M. Rebecca Shaw of the Carnegie Institution of Washington in Stanford, Calif.; Michael E. Loik of the University of California, Santa Cruz; Stanley D. Smith of the University of Nevada, Las Vegas; David T. Tissue and John C. Zak of Texas Tech University in Lubbock; Jake F. Weltzin of the University of Tennessee in Knoxville; William T. Pockman of the University of New Mexico in Albuquerque; Osvaldo E. Sala of the University of Buenos Aires in Argentina; Brent M. Haddad of the University of California, Santa Cruz; John Harte of the University of California, Berkeley; George W. Koch of Northern Arizona University in Flagstaff; Susan Schwinning of Biosphere 2 Center, Columbia University, Oracle, Ariz.; Eric E. Small of the University of Colorado at Boulder; and David G. Williams of the University of Wyoming in Laramie. The research was funded by the National Science Foundation, the U.S. Department of Agriculture, the U.S. Department of Energy and the National Park Service.

Mari N. Jensen | University of Arizona
Further information:
http://uanews.org
http://eebweb.arizona.edu/faculty/huxman/

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>