Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corals can reestablish symbiosis with algae from their environments after bleaching

04.06.2004


Research published in Science demonstrates potential resilience of corals


UB researchers, working with the Caribbean octocoral, Briareum sp., have found that corals can recover from bleaching (inset).
Credit: University at Buffalo



Corals can develop new symbiotic relationships with algae from their environments after they’ve undergone bleaching, the process by which corals whiten as a result of environmental stress, University at Buffalo biologists report in the current issue of Science.

The research provides evidence that corals may have multiple mechanisms that facilitate recovery from bleaching induced by environmental stresses.


Scientists have known that corals can recover from bleaching episodes, but they did not know why.

It has not been clear whether recovery resulted from the few remaining symbiotic algae, or algal symbionts, remaining within the coral tissue since early development, or if coral could acquire entirely new ones from their aquatic environments.

Corals survive and thrive because of the symbiotic relationship they develop with the single-celled algae called zooxanthellae (zo-zan-thel-y), which live inside them and help supply them with food.

But certain environmental stresses, such as high or low light or sea temperatures, can lead to a reduction in algal densities or loss of pigmentation, leaving the coral’s white skeleton visible through the clear tissue.

"Our data show that corals have the potential to take up new symbionts, providing a mechanism for resilience in the face of environmental change," said Mary-Alice Coffroth, Ph.D., associate professor of biological sciences in UB’s College of Arts and Sciences, and senior author on the paper.

Coffroth and her co-author, Cynthia L. Lewis, who recently received her master’s degree in biological sciences from UB, induced bleaching in gorgonian soft corals (a type of sea rod common to Caribbean reefs) by keeping them in darkness in the laboratory.

After 12 weeks of darkness, cell densities of symbionts in the coral had plunged to less than one percent of their population density when the corals were healthy.

During the six weeks following ’bleaching,’ the corals were exposed to algal symbionts that were added to the aquarium water.

The researchers found that at the end of this period, symbiont cell densities within the coral showed a significant increase, demonstrating that the coral animals were able to establish symbiotic relationships with these new, or exogenous, algae.

"We found cell densities within the coral had increased between nine and 31 times the level measured immediately following the bleaching episode," said Lewis.

"The symbiosis had begun to reestablish itself," added Coffroth.

The UB researchers caution that the survival of individual colonies and populations of coral should not be construed as a demonstration that an entire ecosystem is healthy.

"Nevertheless, these data demonstrate that these animals may have the resilience to recover from bleaching episodes," said Coffroth.


The coral used in the research was harvested from the Florida Keys National Marine Sanctuary and the laboratory work was conducted at the Keys Marine Laboratory in Long Key, Florida.

The work was supported by grants from the National Science Foundation.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB’s more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs.

Ellen Goldbaum | University at Buffalo
Further information:
http://www.buffalo.edu/news/fast-execute.cgi/article-page.html?article=67500009

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>