Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model shows long-held constant in ocean nutrient ratio may vary as ecological conditions change

13.05.2004


New research shows that what was once considered a universal constant in oceanography could actually vary in the future – depending on the ecological scenarios that affect competition for resources among microscopic marine plants, which play a role in global climate.


Microscopic image shows clumped cells of blue-green algae, a type of phytoplankton that lives in marine and freshwater environments. Phytoplankton are a rich food source for fish, and they affect global climate by using atmospheric carbon dioxide, a greenhouse gas.
Photo by Hans Paerl, Courtesy University of North Carolina’s Endeavors Magazine.



The future of these plants, called phytoplankton, is important because they exist at the base of the marine food web and represent a large source of food for fish. Also, they affect global climate by using atmospheric carbon dioxide, a greenhouse gas.

Phytoplankton depend upon nitrogen and phosphorus to grow and, ultimately, replenish the supply of these nutrients in the ocean. Since the 1930s, scientists have known that the average nitrogen-to-phosphorus (N:P) nutrient ratio of phytoplankton closely mirrors the N:P ratio in the ocean – 15:1 for the plants and 16:1 for the water. Scientists accepted this as a constant called the Redfield ratio, named after the late Harvard University scientist Alfred Redfield.


But researchers at the Georgia Institute of Technology and Princeton University designed a mathematical model based on phytoplankton physiology. It shows a broad range of N:P ratios are possible depending on the conditions under which species grow and compete. This research – part of a larger biocomplexity research project led by Professor Simon A. Levin at Princeton -- is published in the May 13 edition of the journal Nature.

"The take-home message is that this finding reinforces what some researchers have been saying lately – that N:P is not so fixed," said lead author Christopher Klausmeier, a Georgia Tech assistant professor of biology and former postdoctoral fellow at Princeton. Other authors are Elena Litchman, also of Georgia Tech, and Tanguy Daufresne and Levin of Princeton.

"This shows the range of ratios within which we could expect the ocean to change in the future," Klausmeier said. "Right now we have 16:1, but 500 years from now, if we have a different mix of growth conditions, then it might change the overall N:P needs of the phytoplankton community and the ocean."

Under two extreme conditions – one with few resources because of increased competition and the other with abundant nutrients – researchers determined the optimal strategies that phytoplankton use to allocate the cellular machinery – namely ribosomes and chloroplasts -- for nutrient uptake. Ribosomes assemble two proteins that take up nitrogen and phosphorus. Chloroplasts gather energy from the sun.

"When competing to the very end, then the optimal strategy has a lot of resource acquisition machinery, but not much assembly machinery," Klausmeier explained. "In that case, there aren’t many ribosomes, and therefore not much phosphorus. So if you have a small amount of phosphorus, you have a high N:P ratio. This strategy is best for competition to equilibrium.

"In the other scenario, where nutrients are very available, you have a lot of ribosomes. Then you have a lot of phosphorus and therefore, a low N:P ratio. This is optimal under exponential growth conditions," Klausmeier added.

Given these optimal strategies, researchers were able to determine the N:P needs of species competing at the extremes. "These two scenarios set the endpoints of what happens in reality," Klausmeier explained. "In the real world, it’s a mix of conditions."

From a literature review earlier in the study, they found that N:P ratios among different species vary from 7:1 to 43:1 – with one oddity requiring a 133:1 ratio. Results from modeling the optimal strategies mirror this range of ratios, Klausmeier said, in contrast with the long-accepted constant ratio of N:P in the ocean.

"The 16:1 Redfield ratio has been used too dogmatically by some scientists," Klausmeier said. "It has been treated as an optimum ratio, but that’s not what Redfield intended. He has been misunderstood and oversimplified. This ratio is an average that is subject to change."

As is the case in many other ecological studies, researchers in this study had to confront the natural variability found in nature.

"This is a very ecological story," Klausmeier noted. "One thing that frustrates ecology and makes it tough is that there’s a lot of natural variability. We want to explain the variability, not just the average number. So this problem turned out to be more complicated because of the variability."

Klausmeier’s findings have broader implications, as well, because of the roles phytoplankton play in the ocean ecosystem and across the globe.

"Phytoplankton do half of the planet’s primary production," Klausmeier explained. "They capture energy from the sun and have a big role in biogeochemical cycles -- how elements cycle through the biosphere. Phytoplankton have a main role in the carbon cycle. They need carbon dioxide to grow, so they suck it out of the atmosphere, controlling its presence there. And that ties into global climate."

Klausmeier believes his study contributes to a better understanding of global biogeochemical cycles. "It’s important for us to understand global climate and how it might change in the future," he added. "And ocean life, such as phytoplankton, is a big player in climate."


###
This study was funded by grants from the National Science Foundation and the Andrew Mellon Foundation for Levin’s biocomplexity project. Biocomplexity refers to studies of ecological and evolutionary systems as a whole.

Georgia Tech Research News and Research Horizons magazine, along with high-resolution JPEG images, can be found on the Web at http://www.gtresearchnews.gatech.edu.

Media Contacts:
1. Jane M. Sanders, 404-894-2214, or E-mail: jane.sanders@edi.gatech.edu.
2. John Toon, 404-894-6986, or E-mail: john.toon@edi.gatech.edu.

For technical information, contact:
1. Christopher Klausmeier, Georgia Tech, 404-385-4241 or E-mail: Christopher.klausmeier@biology.gatech.edu.
2. Simon A. Levin, Princeton University, 609-258-6880 or E-mail: slevin@eno.princeton.edu.

Jane Sanders | Georgia Tech
Further information:
http://www.gtresearchnews.gatech.edu/newsrelease/nutrient.htm

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>