Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Earth, sky tapped in unique global climate change study


A wedge of earth and sky 14 feet high and 3 feet deep near here may help scientists worldwide better understand the ecological impact of global climate change.

Scientists are monitoring global change under specially designed canopies where rain and temperatures can be pushed to the extreme. The study, near the Texas A&M University campus, was designed by Texas Agricultural Experiment Station scientists (Texas Agricultural Experiment Station photo by Kathleen Phillips)

Under a series of 10 canopies, a wedge of earth and sky 14 feet hit and 3 feet deep near the Texas A&M University is monitored by a team of Texas Agricultural Experiment Station researchers to determine the affect of global warming. (Texas Agricultural Experiment Station photo by Kathleen Phillips)

It’s an ecosystem where native plants must react to rain and temperature extremes along a dusty, winding road under an intricate, watchful plan of three Texas Agricultural Experiment Station scientists.

Thick white plastic stretches over 14-foot tall galvanized steel arches like giant, protective umbrellas to shelter 80 plots of juniper, post oak and little bluestem grass. But while the awnings prohibit nature from having her way with the young plants, the researchers may jack up the temperatures and send a rainstorm without batting an eye except to make note of the results.

"We hope to learn enough to be able to anticipate vegetation change so land managers can minimize negatives or optimize the positives of global climate change," said Dr. David Briske, Experiment Station plant ecologist.

Briske and Dr. Mark Tjoelker, Experiment Station forest ecologist, are co-investigators on this project, funded by the National Institute for Global Environmental Change. They are assisted by Dr. Astrid Volder, Experiment Station forest research associate.

What makes this global climate change study unique, Tjoelker said, is that it is in the real world -- not a computer-generated prediction model -- and it combines rainfall and warming in various amounts to measure impact on plant growth.

The researchers chose post oak, bluestem grass and junipers because those species are predominant in the 7.4 million-acre post oak savannah region from south central Texas through eastern Oklahoma. A change in rainfall and/or temperatures predicted over the next several decades could mean a shift in the dominance of these important plant species. And that could alter the way land is used and the types of wildlife able to survive there, Volder noted.

Briske and Tjoelker spent a year designing and building the elaborate, experimental system. Volder joined the team recently as the climate simulations and data collection began.

The system includes eight giant shelters built to exclude rainfall but allow a free flow of air so as not to create greenhouse-like conditions. Under each canopy, 10 6-foot-square plots with various combinations of the three species resemble a booklet of green, leafy postage stamps.

Over some hang heat lamps; others have a "dummy lamp," Tjoelker explained, so that the same amount of shade will be projected as on the heated plots. A sprinkler system is constructed over the sheltered plots, and the researchers alter their water source with trace minerals to equal that of the area’s natural rain.

The team, now in its second of a three-year study, routinely run various treatments for the 100 plots and is measuring the effects.

Twenty plots are planted without the protective coverings, heat lamps and water sprinklers as a check for how the species would grow under current temperatures and precipitation.

"We are looking at how the plots are growing as individual plants and together in combinations with the different trees and the grass," Tjoelker said.

Four combinations of weather are being tested: current rainfall, current rainfall plus warming, wet spring/dry summer; and wet spring/dry summer plus warming. Tjoelker said the experiment will go to about 40 percent drier in the summer, but the overall annual total rainfall will be about the same.

Briske said the temperatures will be raised to as much as 2-3 F more than normal, added throughout the year.

Everything is measured: simulated rainfall, soil moisture, soil temperature, air temperature, plant growth, and more. Already, the team is seeing some impact on plant growth.

"We had predicted that juniper would be able to take advantage of extra rain in the spring, because they are evergreen so they are actively growing before the other species," Tjoelker said.

"But we were surprised by the amount of growth response in the four weeks so far," Volder added. "We thought they would respond but not so much, so fast."

The juniper’s response points to the fact that global climate changes could mean some species would take over the region to the detriment of others, the researchers note.

"This type of information may give us an idea of what the critical times are for growth," Briske explained. "And then we could decide how to best alter land use and management."

Kathleen Phillips | Texas A&M University
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>