Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth, sky tapped in unique global climate change study

12.05.2004


A wedge of earth and sky 14 feet high and 3 feet deep near here may help scientists worldwide better understand the ecological impact of global climate change.


Scientists are monitoring global change under specially designed canopies where rain and temperatures can be pushed to the extreme. The study, near the Texas A&M University campus, was designed by Texas Agricultural Experiment Station scientists (Texas Agricultural Experiment Station photo by Kathleen Phillips)


Under a series of 10 canopies, a wedge of earth and sky 14 feet hit and 3 feet deep near the Texas A&M University is monitored by a team of Texas Agricultural Experiment Station researchers to determine the affect of global warming. (Texas Agricultural Experiment Station photo by Kathleen Phillips)



It’s an ecosystem where native plants must react to rain and temperature extremes along a dusty, winding road under an intricate, watchful plan of three Texas Agricultural Experiment Station scientists.

Thick white plastic stretches over 14-foot tall galvanized steel arches like giant, protective umbrellas to shelter 80 plots of juniper, post oak and little bluestem grass. But while the awnings prohibit nature from having her way with the young plants, the researchers may jack up the temperatures and send a rainstorm without batting an eye except to make note of the results.


"We hope to learn enough to be able to anticipate vegetation change so land managers can minimize negatives or optimize the positives of global climate change," said Dr. David Briske, Experiment Station plant ecologist.

Briske and Dr. Mark Tjoelker, Experiment Station forest ecologist, are co-investigators on this project, funded by the National Institute for Global Environmental Change. They are assisted by Dr. Astrid Volder, Experiment Station forest research associate.

What makes this global climate change study unique, Tjoelker said, is that it is in the real world -- not a computer-generated prediction model -- and it combines rainfall and warming in various amounts to measure impact on plant growth.

The researchers chose post oak, bluestem grass and junipers because those species are predominant in the 7.4 million-acre post oak savannah region from south central Texas through eastern Oklahoma. A change in rainfall and/or temperatures predicted over the next several decades could mean a shift in the dominance of these important plant species. And that could alter the way land is used and the types of wildlife able to survive there, Volder noted.

Briske and Tjoelker spent a year designing and building the elaborate, experimental system. Volder joined the team recently as the climate simulations and data collection began.

The system includes eight giant shelters built to exclude rainfall but allow a free flow of air so as not to create greenhouse-like conditions. Under each canopy, 10 6-foot-square plots with various combinations of the three species resemble a booklet of green, leafy postage stamps.

Over some hang heat lamps; others have a "dummy lamp," Tjoelker explained, so that the same amount of shade will be projected as on the heated plots. A sprinkler system is constructed over the sheltered plots, and the researchers alter their water source with trace minerals to equal that of the area’s natural rain.

The team, now in its second of a three-year study, routinely run various treatments for the 100 plots and is measuring the effects.

Twenty plots are planted without the protective coverings, heat lamps and water sprinklers as a check for how the species would grow under current temperatures and precipitation.

"We are looking at how the plots are growing as individual plants and together in combinations with the different trees and the grass," Tjoelker said.

Four combinations of weather are being tested: current rainfall, current rainfall plus warming, wet spring/dry summer; and wet spring/dry summer plus warming. Tjoelker said the experiment will go to about 40 percent drier in the summer, but the overall annual total rainfall will be about the same.

Briske said the temperatures will be raised to as much as 2-3 F more than normal, added throughout the year.

Everything is measured: simulated rainfall, soil moisture, soil temperature, air temperature, plant growth, and more. Already, the team is seeing some impact on plant growth.

"We had predicted that juniper would be able to take advantage of extra rain in the spring, because they are evergreen so they are actively growing before the other species," Tjoelker said.

"But we were surprised by the amount of growth response in the four weeks so far," Volder added. "We thought they would respond but not so much, so fast."

The juniper’s response points to the fact that global climate changes could mean some species would take over the region to the detriment of others, the researchers note.

"This type of information may give us an idea of what the critical times are for growth," Briske explained. "And then we could decide how to best alter land use and management."

Kathleen Phillips | Texas A&M University
Further information:
http://agnews.tamu.edu/dailynews/stories/FRSC/May1104a.htm

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>