Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remote sensing to monitor mining pollution

12.05.2004


Remote sensing methods that could be used in future to monitor pollution from mining at less cost and to common standards across the EU were tested in six diverse sites across Europe by IST project MINEO.



Faced with increasing environmental pressure and regulatory controls due to surface and groundwater pollution, soil contamination, and terrain instability, the mining industry and decision makers need innovative and cost-effective tools for environmental data acquisition and processing that provide a sound basis for sustainable economic development of the sector.

MINEO’s answer was to develop the components of a future decision-making tool for use in environmental planning, and to disseminate knowledge and generate awareness of the role that can be played by earth observation data in this process. These decision-making tools and methods to exploit the data could potentially be used in future sustainable information systems that locate and monitor environmental risks.


Innovative earth observation techniques

Regularly updated information stored in databases related to mining environments is used to draw up Environmental Impact Assessments (EIAs) and Environmental Management Plans (EMPs). To collect this information innovative earth observation techniques developed by the 11-member MINEO consortium can be used. Hyperspectral imaging sensors that identify and map materials through spectroscopic remote sensing produce data that can characterise the chemical and/or mineralogical composition of the ground surface.

The primary advantages of this future space-borne imaging technique are the reduction in conventional, time consuming and expensive field sampling methods and its capability to gather repeat data, which assists in monitoring mining pollution.

"Today, only three commercially available sensors are able to meet these requirements [for mineral discrimination]: HyMap, from Australia, CASI from Canada and AISA from Finland," explains coordinator Stéphane Chevrel of the Bureau de Recherches Géologiques et Minières, France. "All are airborne sensors, the reason why we used airborne data."

Such earth observation data, when integrated into Geographic Information Systems (GIS) and combined with other data relevant to environmental concerns, is valuable in producing EIAs and EMPs of mining at local and regional scale. It can also be used in the production of pollution risk maps around mining areas.

A major project output was the development of a specific spectral database application, the MINEO Spectral Library. Fed with more than 1500 representative spectra, it is an extensive spectral library of contaminated or impacted areas from the six test sites. The application allows the management, comparison, and search and retrieval of spectra, according to spectral characteristics, type of surface feature or target investigated, location, climatic conditions, etc. These can be directly displayed in the image-processing software environment for immediate use in hyperspectral image processing for environmental impact mapping. The consortium also developed general guidelines for image processing procedures and algorithms for contamination and impacts.

Positive results from test sites

Six mining areas were chosen as test sites - Portugal, the UK, Germany, Austria, Finland and Greenland - reflecting Europe’s climatic, geographic and socio-economic environmental diversity. MINEO relied on the use of high quality airborne hyperspectral imaging spectrometer data. The main concern during the airborne survey was to acquire as much high quality data from the six test sites as time and weather would allow.

The results from the six test sites were very encouraging despite the very challenging and problematic abundance of vegetation that characterises the European landscape. Promising results were obtained in combining the maps with other relevant GIS information for modelling contamination, pollution risk, site rehabilitation or change detection.

The possible generic character of the procedures and algorithms used was examined, in particular through site cross-validation approaches, with a view to their applicability and reproducibility in Europe and other parts of the world. MINEO found that imaging spectroscopy can make an invaluable contribution to mapping mining-related contamination and/or impacts across a large variety of mining environments and in different climatic contexts.

This very innovative method needs further research before it can reach a real operational status. However, the MINEO project laid the groundwork for future projects involving imaging spectroscopy in environmental studies and sparked the interest of the international scientific community for mining-related remote sensing studies.

"The potential for these results is excellent for future very high spectral resolution satellite data, complemented by very high spatial resolution data," explains Chevrel. "Project participants continue to use the skills developed over the course of the project. We are currently using Hyperion data [onboard NASA’s EO-1 experimental satellite] for testing and setting up new projects to continue developing applications."

"The transposition of the MINEO concept to space-borne hyperspectral imagery will not be a problem since somebody will launch a spaceborne sensor that meets our requirements [for mineral discrimination]. This is unfortunately not planned in the short term," concludes Chevrel.

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&ID=65033

More articles from Ecology, The Environment and Conservation:

nachricht Calculating recharge of groundwater more precisely
28.02.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>