Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire ant killing protozoa found in 120 Texas counties

10.05.2004


If imported fire ants dreamed – and who knows if they do or don’t – then a tiny protozoa could be their worst nightmare.



Even better news: Texas A&M University System entomologists have completed a survey that detected the protozoa in fire ant colonies in approximately 120 of the 157 Texas counties where they have been found.

Once a colony is infected, the protozoa debilitates the queen, the workers and even the larvae. The disease shortens their the ants’ life spans and raises the mortality of sexual females.


The tiny microorganism may not eradicate the fire ants but it has the potential of changing it from a highly aggressive pest into one much less competitive with native species, said Dr. Forrest Mitchell, entomologist with the Texas Agricultural Experiment Station at Stephenville.

Now that the survey is complete, the next step is to grow the protozoa on culture mediums. If culturing is successful, the research might eventually yield a product that would introduce the protozoa into fire ant mounds in the form of a bait. Alternately, infected fire ants might be introduced into areas where the protozoa is not present.

But there are a lot of questions to be answered and problems to be solved first.

The first question, Mitchell said, is where did the protozoans come from?

Though there are several native species of fire ant, their stings pale compared to their more aggressive cousin, the red imported fire ant, which was accidentally introduced to the United States in the 1930s. Because it lacks natural predators here, the red imported fire ant has spread to all or portions of Florida, Georgia, South Carolina, Tennessee, Alabama, Mississippi, Arkansas, Texas and Oklahoma. The species has become very abundant, displacing many native ant species.

Scientists have long known that one of the pest’s natural enemies in South America is Thelohania solenopsae, a microscopic organism related to the amoeba.

"It infects about 25 percent of the ants down there. It is one of the natural pathogens, but the degree of its importance is hard to access," Mitchell said.

The scientific community has been extremely cautious about introducing the protozoa in the United States, however, not knowing what effect it might have on the native ant species, such as harvester, carpenter and leaf-cutting ants, Mitchell said.

Because of these fears, studies of the South American protozoa were done in labs under controlled conditions. Then in 1998, an U.S. Department of Agriculture entomologist found an fire ant colony near Thorndale infested with the protozoa.

"Later, tests showed that the DNA of the Thorndale strain differed from the South American strain," Mitchell said.

The Texas A&M survey shows the protozoa has occurred naturally, without human intervention. Questions still remain, however, before Mitchell is comfortable with the idea of helping the protozoa propagate. It could be that the protozoa was in North America all along, just waiting for the fire ant to be introduced as a host? Or, was the protozoa itself an emigre, hitching into the country with the South America fire ants? If it was an emigre, did the protozoa evolve so its DNA now looks different from that of the South American strain?

If the protozoa is native to North America, then its further introduction will not likely harm the native ant population. They are already adapted to it.

If it’s not native,, helping it spread might not be a wise thing to do, Mitchell said.

These are crucial questions because ants play a critical role in the ecological balance. The predatory types kill and eat many other insects, both harmful and beneficial. Though small individually, collectively ants can make a huge impact. Worldwide, a figure for ants comprising 15 percent of all terrestrial animal biomass is not out of line.

"No one really knows for sure what percentage ants constitute of the animal biomass. But one thing is for certain. If you really want to disrupt the ecosystem, disrupt the ants," Mitchell said.

Robert Burns | Texas A&M University
Further information:
http://agnews.tamu.edu/dailynews/stories/ENTO/Mar2204a.htm

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>