Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Into the dead zone: Galveston researcher examines loss of marine life

07.05.2004


A "dead zone," like the Stephen King novel of the same name, is a place where life can end. The horror meister probably wasn’t thinking about fish.



Dead zones are areas of the ocean where marine life - especially large quantities of fish - mysteriously die and where future marine life may never have a chance.

One well-known dead zone is near the Mississippi River delta area, where the nearby Sabine and Atchafalaya Rivers flow into southern Louisiana. Texas A&M University at Galveston researcher Antonietta Quigg is on a quest trying to learn why this dead zone is occurring and what is causing it - and the lurking suspicion, she says, is a combination of biological, chemical and physical interactions that may or may not be triggered by fertilizer runoffs from the Mississippi is the culprit.


Her work is part of two three-year studies funded by the National Oceanic and Atmospheric Administration (NOAA).

"Levels of nitrogen in Gulf waters are especially high in the spring and summer, when fertilizers are most frequently used," Quigg explains. "We still have a lot of work to do, but it looks like fertilizer runoffs remain the culprit in helping to create this large dead zone."

Many dead zones are caused by farm fertilizers and other chemicals, and their runoff into rivers creates a large amount of plankton, which in turn depletes oxygen as it sinks down into the water. Without sufficient oxygen, marine life on and close to sediment dies.

The Mississippi is the largest river in the U.S., draining 40 percent of the land area of the country. It also accounts for almost 90 percent of the freshwater runoff into the Gulf of Mexico.

Where the Mississippi empties into the Gulf Coast is the start of the dead zone Quigg is studying - and areas where high concentrations of nitrogen, phosphorous and other substances commonly used in fertilizers are being found.

Quigg will closely examine bacteria found in the area to see if the suspected agents found in fertilizers are currently there. Spring is peak fertilizing time for many farmers and ranchers all along the Mississippi River, meaning the suspected runoff of these chemicals into the Gulf Coast area will be reaching a climax in the weeks ahead.

"We will look at the nutrients in the water in the dead zone area, look at the water color and examine the bacterial communities," she says.

"We want to determine what specific biological activities are going on there - and their interactions with the chemical and physical environment. Whatever is happening is causing a large amount of marine life to die."

Studies by the United Nations Environment Program show that the number of dead zones in the world’s oceans has increased steadily in the past 25 years, and there are now about 150 dead zones worldwide.

Because it has created a quick-acting dead zone, the Mississippi River delta area has become one of the most famous dead zones in the world, but other recent ones have occurred in South American, Japan, China and Australia, the United Nations report says.

Dead zones range in size from just a few square miles to more than 45,000 square miles, and the loss of fish and other marine life can be immense.

"Dead zones seem to have one thing in common, and it’s that they’re getting bigger," says Quigg. "In our study, we hope to find some definitive answers on what is causing the dead zone in the Mississippi River delta area."


Additional Contact: Antonietta Quigg at 409-740-4990.

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>