Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Into the dead zone: Galveston researcher examines loss of marine life

07.05.2004


A "dead zone," like the Stephen King novel of the same name, is a place where life can end. The horror meister probably wasn’t thinking about fish.



Dead zones are areas of the ocean where marine life - especially large quantities of fish - mysteriously die and where future marine life may never have a chance.

One well-known dead zone is near the Mississippi River delta area, where the nearby Sabine and Atchafalaya Rivers flow into southern Louisiana. Texas A&M University at Galveston researcher Antonietta Quigg is on a quest trying to learn why this dead zone is occurring and what is causing it - and the lurking suspicion, she says, is a combination of biological, chemical and physical interactions that may or may not be triggered by fertilizer runoffs from the Mississippi is the culprit.


Her work is part of two three-year studies funded by the National Oceanic and Atmospheric Administration (NOAA).

"Levels of nitrogen in Gulf waters are especially high in the spring and summer, when fertilizers are most frequently used," Quigg explains. "We still have a lot of work to do, but it looks like fertilizer runoffs remain the culprit in helping to create this large dead zone."

Many dead zones are caused by farm fertilizers and other chemicals, and their runoff into rivers creates a large amount of plankton, which in turn depletes oxygen as it sinks down into the water. Without sufficient oxygen, marine life on and close to sediment dies.

The Mississippi is the largest river in the U.S., draining 40 percent of the land area of the country. It also accounts for almost 90 percent of the freshwater runoff into the Gulf of Mexico.

Where the Mississippi empties into the Gulf Coast is the start of the dead zone Quigg is studying - and areas where high concentrations of nitrogen, phosphorous and other substances commonly used in fertilizers are being found.

Quigg will closely examine bacteria found in the area to see if the suspected agents found in fertilizers are currently there. Spring is peak fertilizing time for many farmers and ranchers all along the Mississippi River, meaning the suspected runoff of these chemicals into the Gulf Coast area will be reaching a climax in the weeks ahead.

"We will look at the nutrients in the water in the dead zone area, look at the water color and examine the bacterial communities," she says.

"We want to determine what specific biological activities are going on there - and their interactions with the chemical and physical environment. Whatever is happening is causing a large amount of marine life to die."

Studies by the United Nations Environment Program show that the number of dead zones in the world’s oceans has increased steadily in the past 25 years, and there are now about 150 dead zones worldwide.

Because it has created a quick-acting dead zone, the Mississippi River delta area has become one of the most famous dead zones in the world, but other recent ones have occurred in South American, Japan, China and Australia, the United Nations report says.

Dead zones range in size from just a few square miles to more than 45,000 square miles, and the loss of fish and other marine life can be immense.

"Dead zones seem to have one thing in common, and it’s that they’re getting bigger," says Quigg. "In our study, we hope to find some definitive answers on what is causing the dead zone in the Mississippi River delta area."


Additional Contact: Antonietta Quigg at 409-740-4990.

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>