Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nasa Satellites And Balloons Spot Airborne Pollution "Train"

04.05.2004


NASA scientists discovered pollution could catch an airborne "express train," or wind current, from Asia all the way to the southern Atlantic Ocean.


RIDING THE POLLUTION TRAIN

The red arrows on this globe trace the fast track of ozone pollution from Asia as it contributes to the highest ozone episodes found in the South Atlantic. Asian smog with moderate amounts of ozone moves south into the Indian Ocean. Repeatedly, every few weeks, when this ozone can be swept upwards by tall rainclouds, it can then move eastward rapidly across Central Africa (upper arrow). The long red path is shown to end at Ascension Island, but actually a large patch of ozone fills much of the South Atlantic. Additionally, lightning and vegetation burning over Africa could add highly visible "pollution peak" features, but these obvious nearby African sources tell only half the story of the Atlantic ozone episodes. CREDIT: NASA, MODIS image


AN OZONESONDE AND BALLOON

Anne Thompson (NASA, left) and Agnes Phahlane (South African Weather Service, right) prepare to launch a balloon carrying an ozonesonde, a sensor that measures ozone. CREDIT: NASA



Scientists believe during certain seasons, as much as half of the ozone pollution above the Atlantic Ocean may be speeding down a "train" track of air from the Indian Ocean. As it rolls along, it picks up more smog from air peppered with thunderstorms that bring it up from the Earth’s surface.

Bob Chatfield, a scientist at NASA’s Ames Research Center, Moffett Field, Calif. said, "Man-made pollution from Asia can flow southward, get caught up into clouds, and then move steadily and rapidly westward across Africa and the Atlantic, reaching as far as Brazil."


Chatfield and Anne Thompson, a scientist at NASA’s Goddard Spaceflight Center, Greenbelt, Md., used data from two satellites and a series of balloon-borne sensors to spot situations when near-surface smog could "catch the train" westward several times annually from January to April.

During those periods of exceptionally high ozone in the South Atlantic, especially during late winter, researchers noticed Indian Ocean pollution follows a similar westward route, wafted by winds in the upper air. They found the pollution eventually piles up in the South Atlantic. "We’ve always had some difficulty explaining all that ozone," Thompson admitted.

Seasonal episodes of unusually high ozone levels over the South Atlantic seem to begin with pollution sources thousands of miles away in southern Asia," Chatfield said. Winds are known to transport ozone and pollutants thousands of miles away from their original sources. Clearly defined individual layers of ozone in the tropical South Atlantic were traced to lightning sources over nearby continents. In addition to ozone peaks associated with lightning, high levels of ozone pollution came from those spots in the Sahel area of North Africa where vegetation burned. However, even outside these areas, there was extra ozone pollution brought by the Asian "express train."

The scientists pinpointed these using the joint NASA-Japan Tropical Rainfall Measuring Mission satellite to see fires and lightning strikes, both of which promote ozone in the lower atmosphere. Researchers also identified large areas of ozone smog moving high over Africa using the Total Ozone Mapping Spectrometer satellite instrument.

The scientists confirmed the movement of the smog by using sensors on balloons in the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. A computer model helped track the ozone train seen along the way by the SHADOZ balloon and satellite sensors. The scientists recreated the movement of the ozone from the Indian Ocean region to the Southern Atlantic Ocean.

Their research results appear in an article in a recent issue of the American Geophysical Union’s Geophysical Research Letters.

The mission of NASA’s Earth Science Enterprise is to develop a scientific understanding of the Earth system and its response to natural or human-induced changes to enable improved prediction capability for climate, weather, and natural hazards.

Gretchen Cook-Anderson | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2004/0426pollutiontrain.html

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Party discipline for jumping genes

22.09.2017 | Life Sciences

The pyrenoid is a carbon-fixing liquid droplet

22.09.2017 | Life Sciences

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>