Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nasa Satellites And Balloons Spot Airborne Pollution "Train"

04.05.2004


NASA scientists discovered pollution could catch an airborne "express train," or wind current, from Asia all the way to the southern Atlantic Ocean.


RIDING THE POLLUTION TRAIN

The red arrows on this globe trace the fast track of ozone pollution from Asia as it contributes to the highest ozone episodes found in the South Atlantic. Asian smog with moderate amounts of ozone moves south into the Indian Ocean. Repeatedly, every few weeks, when this ozone can be swept upwards by tall rainclouds, it can then move eastward rapidly across Central Africa (upper arrow). The long red path is shown to end at Ascension Island, but actually a large patch of ozone fills much of the South Atlantic. Additionally, lightning and vegetation burning over Africa could add highly visible "pollution peak" features, but these obvious nearby African sources tell only half the story of the Atlantic ozone episodes. CREDIT: NASA, MODIS image


AN OZONESONDE AND BALLOON

Anne Thompson (NASA, left) and Agnes Phahlane (South African Weather Service, right) prepare to launch a balloon carrying an ozonesonde, a sensor that measures ozone. CREDIT: NASA



Scientists believe during certain seasons, as much as half of the ozone pollution above the Atlantic Ocean may be speeding down a "train" track of air from the Indian Ocean. As it rolls along, it picks up more smog from air peppered with thunderstorms that bring it up from the Earth’s surface.

Bob Chatfield, a scientist at NASA’s Ames Research Center, Moffett Field, Calif. said, "Man-made pollution from Asia can flow southward, get caught up into clouds, and then move steadily and rapidly westward across Africa and the Atlantic, reaching as far as Brazil."


Chatfield and Anne Thompson, a scientist at NASA’s Goddard Spaceflight Center, Greenbelt, Md., used data from two satellites and a series of balloon-borne sensors to spot situations when near-surface smog could "catch the train" westward several times annually from January to April.

During those periods of exceptionally high ozone in the South Atlantic, especially during late winter, researchers noticed Indian Ocean pollution follows a similar westward route, wafted by winds in the upper air. They found the pollution eventually piles up in the South Atlantic. "We’ve always had some difficulty explaining all that ozone," Thompson admitted.

Seasonal episodes of unusually high ozone levels over the South Atlantic seem to begin with pollution sources thousands of miles away in southern Asia," Chatfield said. Winds are known to transport ozone and pollutants thousands of miles away from their original sources. Clearly defined individual layers of ozone in the tropical South Atlantic were traced to lightning sources over nearby continents. In addition to ozone peaks associated with lightning, high levels of ozone pollution came from those spots in the Sahel area of North Africa where vegetation burned. However, even outside these areas, there was extra ozone pollution brought by the Asian "express train."

The scientists pinpointed these using the joint NASA-Japan Tropical Rainfall Measuring Mission satellite to see fires and lightning strikes, both of which promote ozone in the lower atmosphere. Researchers also identified large areas of ozone smog moving high over Africa using the Total Ozone Mapping Spectrometer satellite instrument.

The scientists confirmed the movement of the smog by using sensors on balloons in the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. A computer model helped track the ozone train seen along the way by the SHADOZ balloon and satellite sensors. The scientists recreated the movement of the ozone from the Indian Ocean region to the Southern Atlantic Ocean.

Their research results appear in an article in a recent issue of the American Geophysical Union’s Geophysical Research Letters.

The mission of NASA’s Earth Science Enterprise is to develop a scientific understanding of the Earth system and its response to natural or human-induced changes to enable improved prediction capability for climate, weather, and natural hazards.

Gretchen Cook-Anderson | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2004/0426pollutiontrain.html

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>