Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds caused by aircraft exhaust may warm the U.S. climate

29.04.2004


NASA scientists have found that cirrus clouds, formed by contrails from aircraft engine exhaust, are capable of increasing average surface temperatures enough to account for a warming trend in the United States that occurred between 1975 and 1994.

"This result shows the increased cirrus coverage, attributable to air traffic, could account for nearly all of the warming observed over the United States for nearly 20 years starting in 1975, but it is important to acknowledge contrails would add to and not replace any greenhouse gas effect," said Patrick Minnis, senior research scientist at NASA’s Langley Research Center in Hampton, Va. The study was published April 15 in the Journal of Climate. "During the same period, warming occurred in many other areas where cirrus coverage decreased or remained steady," he added.

"This study demonstrates that human activity has a visible and significant impact on cloud cover and, therefore, on climate. It indicates that contrails should be included in climate change scenarios," Minnis said.



Minnis determined the observed one percent per decade increase in cirrus cloud cover over the United States is likely due to air traffic-induced contrails. Using published results from NASA’s Goddard Institute for Space Studies (New York) general circulation model, Minnis and his colleagues estimated contrails and their resulting cirrus clouds would increase surface and lower atmospheric temperatures by 0.36 to 0.54 degrees Fahrenheit per decade. Weather service data reveal surface and lower atmospheric temperatures across North America rose by almost 0.5 degree Fahrenheit per decade between 1975 and 1994.

Minnis worked with colleagues Kirk Ayers, Rabi Palinkonda, and Dung Phan from Analytical Services and Materials, Inc., of Hampton, Va. They used 25 years of global surface observations of cirrus clouds, temperature and humidity records from the National Centers for Environmental Prediction (NCEP) reanalysis dataset. They confirmed the cirrus trends with 13 years of satellite data from NASA’s International Satellite Cloud Climatology Project.

Both air traffic and cirrus coverage increased during the period of warming despite no changes in the NCEP humidity at jet cruise altitudes over the United States. By contrast, humidity at flight altitudes decreased over other land areas, such as Asia, and was accompanied by less cirrus coverage, except over Western Europe, where air traffic is very heavy.

Cirrus coverage also rose in the North Pacific and North Atlantic flight corridors. The trends in cirrus cover and warming over the United States were greatest during winter and spring, the same seasons when contrails are most frequent. These results, along with findings from earlier studies, led to the conclusion that contrails caused the increase in cirrus clouds.

"This study indicates that contrails already have substantial regional effects where air traffic is heavy, such as over the United States. As air travel continues growing in other areas, the impact could become globally significant," Minnis said.

Humidity is the amount of water vapor in the air and determines how long contrails remain in the atmosphere. Contrails that persist for an extended period of time are most likely to impact the climate.

Contrails form high in the atmosphere when the mixture of water vapor in the aircraft exhaust and the air condenses and freezes. Persisting contrails can spread into extensive cirrus clouds that tend to warm the Earth, because they reflect less sunlight than the amount of heat they trap. The balance between Earth’s incoming sunlight and outgoing heat drives climate change.

NASA’s Earth Science Enterprise funded this research. NASA’s Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space.

Julia Cole | EurekAlert!
Further information:
http://www.larc.nasa.gov/
http://www.nasa.gov/home/index.html

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>