Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists plan to reclaim contaminated land by using domestic waste

27.04.2004


A novel technique to combat the UK’s looming landfill crisis begins its first field trials in Yorkshire this week.



The technique known as Biostore combines stabilised sewage sludge with industrial waste such as coal shale and demolition waste to create solid building foundations. It has been developed by scientists at Imperial College London, and is funded by Yorkshire Water Services, the Institution of Civil Engineers R&D Enabling Fund, and a Biffaward.

With England and Wales alone producing 400 million tonnes of waste every year and 0.8 per cent of UK land designated as contaminated, Biostore not only provides a potential alternative to traditional landfill as a method of waste management, but also offers the possibility of reusing brownfield sites rather than developing greenfield land.


Biostore is based on an earlier idea to restore coal tips using artificial soil formulations, but goes a step further by using the space left between particles in compacted rubble.

By filling this 20 to 25 per cent of volume with stabilised sludge and isolating the composite mixture from the outside environment, the researchers expect to demonstrate that it is possible to create stable ground suitable for foundations beneath amenities and light building construction.

“I guess one of the big concerns most people voice when we explain the project is the kind of smells involved and whether the sludge would be safe,” says Dr Irina Tarasova of Imperial’s Department of Earth Sciences and Engineering, a researcher on the project.

“But we’ve shown that by using properly stabilised materials in a clay-lined emplacement with a gravel surround for rainwater bypass, an isolated and largely impermeable composite mass is rapidly formed. The resulting structure is similar to unused land but with the bonus that it has engineered stability and drainage.”

Project leader Dr Bill Dudeney adds:

“The idea behind Biostore is relatively simple - but it is only with changes in legislation and public perception that we have had a strong incentive to look for such novel solutions to dealing with waste. For example, just one Biostore emplacement could in principle deal with the annual wastewater sludge output of a large town.

“However, before any large-scale application can be made, surveys of suitable sites and establishment of an acceptable regulatory framework will be necessary in collaboration with the Environment Agency. Our research partners, the British Geological Survey and the Clean Rivers Trust, are contributing to these tasks.

“The EU landfill directive means that by 2020 we will have to reduce our use of landfill to 35 per cent of that in 1995. It is timely to consider alternative methods of rubbish disposal such as recycling or incineration and to invest in novel technology to help tackle the growing mountain of waste we produce.”

Having successfully carried out underpinning laboratory studies, the Imperial team is now joining forces with Biffa Waste Services Ltd and Yorkshire Water Services Ltd to carry out field tests at three sites in Yorkshire, starting at the Yorkshire Water Bradley site on 26 April. Further regulated trials will be carried out at sites near Chesterfield and Leeds and will continue for up to five years

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>