Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists plan to reclaim contaminated land by using domestic waste

27.04.2004


A novel technique to combat the UK’s looming landfill crisis begins its first field trials in Yorkshire this week.



The technique known as Biostore combines stabilised sewage sludge with industrial waste such as coal shale and demolition waste to create solid building foundations. It has been developed by scientists at Imperial College London, and is funded by Yorkshire Water Services, the Institution of Civil Engineers R&D Enabling Fund, and a Biffaward.

With England and Wales alone producing 400 million tonnes of waste every year and 0.8 per cent of UK land designated as contaminated, Biostore not only provides a potential alternative to traditional landfill as a method of waste management, but also offers the possibility of reusing brownfield sites rather than developing greenfield land.


Biostore is based on an earlier idea to restore coal tips using artificial soil formulations, but goes a step further by using the space left between particles in compacted rubble.

By filling this 20 to 25 per cent of volume with stabilised sludge and isolating the composite mixture from the outside environment, the researchers expect to demonstrate that it is possible to create stable ground suitable for foundations beneath amenities and light building construction.

“I guess one of the big concerns most people voice when we explain the project is the kind of smells involved and whether the sludge would be safe,” says Dr Irina Tarasova of Imperial’s Department of Earth Sciences and Engineering, a researcher on the project.

“But we’ve shown that by using properly stabilised materials in a clay-lined emplacement with a gravel surround for rainwater bypass, an isolated and largely impermeable composite mass is rapidly formed. The resulting structure is similar to unused land but with the bonus that it has engineered stability and drainage.”

Project leader Dr Bill Dudeney adds:

“The idea behind Biostore is relatively simple - but it is only with changes in legislation and public perception that we have had a strong incentive to look for such novel solutions to dealing with waste. For example, just one Biostore emplacement could in principle deal with the annual wastewater sludge output of a large town.

“However, before any large-scale application can be made, surveys of suitable sites and establishment of an acceptable regulatory framework will be necessary in collaboration with the Environment Agency. Our research partners, the British Geological Survey and the Clean Rivers Trust, are contributing to these tasks.

“The EU landfill directive means that by 2020 we will have to reduce our use of landfill to 35 per cent of that in 1995. It is timely to consider alternative methods of rubbish disposal such as recycling or incineration and to invest in novel technology to help tackle the growing mountain of waste we produce.”

Having successfully carried out underpinning laboratory studies, the Imperial team is now joining forces with Biffa Waste Services Ltd and Yorkshire Water Services Ltd to carry out field tests at three sites in Yorkshire, starting at the Yorkshire Water Bradley site on 26 April. Further regulated trials will be carried out at sites near Chesterfield and Leeds and will continue for up to five years

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Using drones to estimate crop damage by wild boars
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>