Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists plan to reclaim contaminated land by using domestic waste

27.04.2004


A novel technique to combat the UK’s looming landfill crisis begins its first field trials in Yorkshire this week.



The technique known as Biostore combines stabilised sewage sludge with industrial waste such as coal shale and demolition waste to create solid building foundations. It has been developed by scientists at Imperial College London, and is funded by Yorkshire Water Services, the Institution of Civil Engineers R&D Enabling Fund, and a Biffaward.

With England and Wales alone producing 400 million tonnes of waste every year and 0.8 per cent of UK land designated as contaminated, Biostore not only provides a potential alternative to traditional landfill as a method of waste management, but also offers the possibility of reusing brownfield sites rather than developing greenfield land.


Biostore is based on an earlier idea to restore coal tips using artificial soil formulations, but goes a step further by using the space left between particles in compacted rubble.

By filling this 20 to 25 per cent of volume with stabilised sludge and isolating the composite mixture from the outside environment, the researchers expect to demonstrate that it is possible to create stable ground suitable for foundations beneath amenities and light building construction.

“I guess one of the big concerns most people voice when we explain the project is the kind of smells involved and whether the sludge would be safe,” says Dr Irina Tarasova of Imperial’s Department of Earth Sciences and Engineering, a researcher on the project.

“But we’ve shown that by using properly stabilised materials in a clay-lined emplacement with a gravel surround for rainwater bypass, an isolated and largely impermeable composite mass is rapidly formed. The resulting structure is similar to unused land but with the bonus that it has engineered stability and drainage.”

Project leader Dr Bill Dudeney adds:

“The idea behind Biostore is relatively simple - but it is only with changes in legislation and public perception that we have had a strong incentive to look for such novel solutions to dealing with waste. For example, just one Biostore emplacement could in principle deal with the annual wastewater sludge output of a large town.

“However, before any large-scale application can be made, surveys of suitable sites and establishment of an acceptable regulatory framework will be necessary in collaboration with the Environment Agency. Our research partners, the British Geological Survey and the Clean Rivers Trust, are contributing to these tasks.

“The EU landfill directive means that by 2020 we will have to reduce our use of landfill to 35 per cent of that in 1995. It is timely to consider alternative methods of rubbish disposal such as recycling or incineration and to invest in novel technology to help tackle the growing mountain of waste we produce.”

Having successfully carried out underpinning laboratory studies, the Imperial team is now joining forces with Biffa Waste Services Ltd and Yorkshire Water Services Ltd to carry out field tests at three sites in Yorkshire, starting at the Yorkshire Water Bradley site on 26 April. Further regulated trials will be carried out at sites near Chesterfield and Leeds and will continue for up to five years

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>