Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists plan to reclaim contaminated land by using domestic waste

27.04.2004


A novel technique to combat the UK’s looming landfill crisis begins its first field trials in Yorkshire this week.



The technique known as Biostore combines stabilised sewage sludge with industrial waste such as coal shale and demolition waste to create solid building foundations. It has been developed by scientists at Imperial College London, and is funded by Yorkshire Water Services, the Institution of Civil Engineers R&D Enabling Fund, and a Biffaward.

With England and Wales alone producing 400 million tonnes of waste every year and 0.8 per cent of UK land designated as contaminated, Biostore not only provides a potential alternative to traditional landfill as a method of waste management, but also offers the possibility of reusing brownfield sites rather than developing greenfield land.


Biostore is based on an earlier idea to restore coal tips using artificial soil formulations, but goes a step further by using the space left between particles in compacted rubble.

By filling this 20 to 25 per cent of volume with stabilised sludge and isolating the composite mixture from the outside environment, the researchers expect to demonstrate that it is possible to create stable ground suitable for foundations beneath amenities and light building construction.

“I guess one of the big concerns most people voice when we explain the project is the kind of smells involved and whether the sludge would be safe,” says Dr Irina Tarasova of Imperial’s Department of Earth Sciences and Engineering, a researcher on the project.

“But we’ve shown that by using properly stabilised materials in a clay-lined emplacement with a gravel surround for rainwater bypass, an isolated and largely impermeable composite mass is rapidly formed. The resulting structure is similar to unused land but with the bonus that it has engineered stability and drainage.”

Project leader Dr Bill Dudeney adds:

“The idea behind Biostore is relatively simple - but it is only with changes in legislation and public perception that we have had a strong incentive to look for such novel solutions to dealing with waste. For example, just one Biostore emplacement could in principle deal with the annual wastewater sludge output of a large town.

“However, before any large-scale application can be made, surveys of suitable sites and establishment of an acceptable regulatory framework will be necessary in collaboration with the Environment Agency. Our research partners, the British Geological Survey and the Clean Rivers Trust, are contributing to these tasks.

“The EU landfill directive means that by 2020 we will have to reduce our use of landfill to 35 per cent of that in 1995. It is timely to consider alternative methods of rubbish disposal such as recycling or incineration and to invest in novel technology to help tackle the growing mountain of waste we produce.”

Having successfully carried out underpinning laboratory studies, the Imperial team is now joining forces with Biffa Waste Services Ltd and Yorkshire Water Services Ltd to carry out field tests at three sites in Yorkshire, starting at the Yorkshire Water Bradley site on 26 April. Further regulated trials will be carried out at sites near Chesterfield and Leeds and will continue for up to five years

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>